Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Deep-ocean researchers target tsunami zone near Japan

21.01.2008
Rice's Sawyer, colleagues search Nankai Trough for quake clues

Rice University Earth scientist Dale Sawyer and colleagues last month reported the discovery of a strong variation in the tectonic stresses in a region of the Pacific Ocean notorious for generating devastating earthquakes and tsunamis in southeastern Japan.

The results came from an eight-week expedition by Sawyer and 15 scientists from six countries at the Nankai Trough, about 100 miles from Kobe, Japan. Using the new scientific drilling vessel "Chikyu," the team drilled deep into a zone responsible for undersea earthquakes that have caused tsunamis and will likely cause more. They collected physical measurements and images using new rugged instruments designed to capture scientific data from deep within a well while it is being drilled.

The Nankai Trough is known as a subduction zone, because it marks the place where one tectonic plate slides beneath another. Tectonic plates are pieces of the Earth's crust, and earthquakes often occur in regions like subduction zones where plates grate and rub against one another. For reasons scientists don't yet understand, plates that should move smoothly relative to each other sometimes become locked. In spite of this, the plates continue moving and stress builds at the points where the plates are locked. The stored energy at these sites is eventually released as large earthquakes, which occur when the locked area breaks and the the plates move past one another very rapidly, creating a devastating tsunami like the one in Sumatra and the Indian Ocean three years ago.

"Earthquakes don't nucleate just anywhere," Sawyer said. "While the slip zone for quakes in this region may be hundreds of kilometers long and tens of kilometers deep, the initiation point of the big quakes is often just about five to six kilometers below the seafloor. We want to know why.”

Sawyer said scientists with the Integrated Ocean Drilling Program (IODP) plan to return to the Nankai Trough aboard the Chikyu each year through 2012, with the ultimate goal of drilling a six-kilometer-deep well to explore the region where the quakes originate. If they succeed, the well will be more than three times deeper than previous wells drilled by scientific drill ships, and it will provide the first direct evidence from this geological region where tsunami-causing quakes originate.

The drilling done by Sawyer and colleagues marked the beginning of this massive project, which IODP has dubbed the Nankai Trough Seismogenic Zone Experiment, or NanTroSEIZE. In addition to the objective of drilling across the plate boundary fault, NanTroSEIZE scientists also hope to sample the rocks and fluids inside the fault, and they want to place instruments inside the fault zone to monitor activity and conditions leading up to the next great earthquake.

"The Chikyu is a brand new ship -- the largest science vessel ever constructed -- and it uses state-of-the-art drilling technology," Sawyer said.

The Chikyu is the first scientific drill ship to incorporate riser drilling technology. Pioneered by the oil industry, a riser system includes an outer casing that surrounds the drill pipe to provide return-circulation of drilling fluid to maintain balanced pressure within the borehole. The technology is necessary for drilling several thousand meters into the Earth.

David Ruth | EurekAlert!
Further information:
http://www.rice.edu

More articles from Earth Sciences:

nachricht NASA sees the end of ex-Tropical Cyclone 02W
21.04.2017 | NASA/Goddard Space Flight Center

nachricht New research unlocks forests' potential in climate change mitigation
21.04.2017 | Clemson University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>