Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Deep-ocean researchers target tsunami zone near Japan

21.01.2008
Rice's Sawyer, colleagues search Nankai Trough for quake clues

Rice University Earth scientist Dale Sawyer and colleagues last month reported the discovery of a strong variation in the tectonic stresses in a region of the Pacific Ocean notorious for generating devastating earthquakes and tsunamis in southeastern Japan.

The results came from an eight-week expedition by Sawyer and 15 scientists from six countries at the Nankai Trough, about 100 miles from Kobe, Japan. Using the new scientific drilling vessel "Chikyu," the team drilled deep into a zone responsible for undersea earthquakes that have caused tsunamis and will likely cause more. They collected physical measurements and images using new rugged instruments designed to capture scientific data from deep within a well while it is being drilled.

The Nankai Trough is known as a subduction zone, because it marks the place where one tectonic plate slides beneath another. Tectonic plates are pieces of the Earth's crust, and earthquakes often occur in regions like subduction zones where plates grate and rub against one another. For reasons scientists don't yet understand, plates that should move smoothly relative to each other sometimes become locked. In spite of this, the plates continue moving and stress builds at the points where the plates are locked. The stored energy at these sites is eventually released as large earthquakes, which occur when the locked area breaks and the the plates move past one another very rapidly, creating a devastating tsunami like the one in Sumatra and the Indian Ocean three years ago.

"Earthquakes don't nucleate just anywhere," Sawyer said. "While the slip zone for quakes in this region may be hundreds of kilometers long and tens of kilometers deep, the initiation point of the big quakes is often just about five to six kilometers below the seafloor. We want to know why.”

Sawyer said scientists with the Integrated Ocean Drilling Program (IODP) plan to return to the Nankai Trough aboard the Chikyu each year through 2012, with the ultimate goal of drilling a six-kilometer-deep well to explore the region where the quakes originate. If they succeed, the well will be more than three times deeper than previous wells drilled by scientific drill ships, and it will provide the first direct evidence from this geological region where tsunami-causing quakes originate.

The drilling done by Sawyer and colleagues marked the beginning of this massive project, which IODP has dubbed the Nankai Trough Seismogenic Zone Experiment, or NanTroSEIZE. In addition to the objective of drilling across the plate boundary fault, NanTroSEIZE scientists also hope to sample the rocks and fluids inside the fault, and they want to place instruments inside the fault zone to monitor activity and conditions leading up to the next great earthquake.

"The Chikyu is a brand new ship -- the largest science vessel ever constructed -- and it uses state-of-the-art drilling technology," Sawyer said.

The Chikyu is the first scientific drill ship to incorporate riser drilling technology. Pioneered by the oil industry, a riser system includes an outer casing that surrounds the drill pipe to provide return-circulation of drilling fluid to maintain balanced pressure within the borehole. The technology is necessary for drilling several thousand meters into the Earth.

David Ruth | EurekAlert!
Further information:
http://www.rice.edu

More articles from Earth Sciences:

nachricht Large-Mouthed Fish Was Top Predator After Mass Extinction
26.07.2017 | Universität Zürich

nachricht Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds
25.07.2017 | University of Illinois at Urbana-Champaign

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>