Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Record warm summers cause extreme ice melt in Greenland

17.01.2008
An international team of scientists, led by Dr Edward Hanna at the University of Sheffield, has demonstrated that recent warm summers have caused the most extreme Greenland ice melting in 50 years. The new research provides further evidence of a key impact of global warming and helps scientists place recent satellite observations of Greenland´s shrinking ice mass in a longer-term climatic context.

Dr Hanna of the University´s Department of Geography, alongside some of the World´s leading Greenland glaciologists and climatologists, analysed a combination of key meteorological and glaciological records spanning a number of decades as part of the research.

The findings, published in Journal of Climate, show how the Greenland Ice Sheet responded to more regional, rather than global, changes in climate between the 1960s and early 1990s. However the last fifteen years has seen an increase in ice melting and a striking correspondence of Greenland with global temperature variations, demonstrating Greenland´s recent response to global warming.

Summer 2003 was exceptionally warm around the margins of the Greenland Ice Sheet, which resulted in the second-highest meltwater running off from the Ice Sheet of the last 50 years. Summer 2005 experienced a record-high melt, which was very recently superseded in summer 2007 – a year almost as warm as 2003.

The team of researchers includes some of the leading Greenland glaciologists and climatologists from the Free University of Brussels, University of Colorado, Danish Meteorological Institute and NASA Goddard Earth Science and Technology Center, University of Maryland Baltimore County, as well as four members of the University of Sheffield.

Dr Edward Hanna said: "Our work shows that global warming is beginning to take its toll on the Greenland Ice Sheet which, as a relict feature of the last Ice Age, has already been living on borrowed time and seems now to be in inexorable decline. The question is can we reduce greenhouse-gas emissions in time to make enough of a difference to curb this decay?"

Lindsey Bird | EurekAlert!
Further information:
http://www.sheffield.ac.uk

More articles from Earth Sciences:

nachricht Predicting unpredictability: Information theory offers new way to read ice cores
07.12.2016 | Santa Fe Institute

nachricht Sea ice hit record lows in November
07.12.2016 | University of Colorado at Boulder

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>