Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brown Planetary Geologists Lend Expertise to Mercury Mission

15.01.2008
When NASA’s MESSENGER spacecraft makes its historic flyby of Mercury on Monday, Jan. 14, 2008, Brown University students, led by planetary geologist James Head, will be part of the action. At mission headquarters and at Brown, these planetary experts will help analyze images from Mercury, the smallest and densest planet in the solar system. Head leads the MESSENGER mission’s geology group, overseeing analysis of Mercury’s volcanic features and dating rocks on the planet’s cratered surface.

What lies on the uncharted side of mysterious Mercury, the smallest planet in the solar system? Brown University students, led by planetary geologist James Head, will study never-before-seen images of Mercury when a NASA spacecraft makes the first visit to Mercury in nearly 33 years.

On Monday, Jan. 14, 2008, the NASA spacecraft MESSENGER (MErcury Surface, Space ENvironment, GEochemistry, and Ranging) will begin collecting more than 1,200 images of Mercury’s ancient Moon-like surface, which is filled with wide craters, rocky plains and curved cliffs. The images will be unprecedented: When the Mariner 10 probe made its final Mercury flyby in 1975, it left with images from less than half the planet.

Determining the composition of rocks on Mercury’s surface, as well as the age and origin of these rocks, will be the central work of MESSENGER’s geology group. James Head, a planetary geologist and the Louis and Elizabeth Scherck Distinguished Professor at Brown, is leading this international team of scientists as well as a cadre of Brown students involved in the mission.

The MESSENGER mission, part of NASA’s Discovery program, is led by Sean Solomon, a geophysicist at the Carnegie Institution of Washington.

“This is pioneering work,” Head said. “When data from MESSENGER starts coming in, we’ll be seeing terrain no human has ever seen before. And when you don’t know what one half of a planet looks like, you’re in for some surprises.”

On Monday, Head and graduate students Laura Kerber and Debra Hurwitz, along with research analyst Jay Dickson, will be at the Johns Hopkins University Applied Physics Laboratory in Maryland to join in MESSENGER lead operations and data analysis. Graduate student Caleb Fassett will lead a “home team” of students from the Department of Geological Sciences, who will begin to study geological data down-linked from the MESSENGER probe.

The spacecraft is equipped with a camera and other instruments that will provide information on the mineralogical and chemical composition of Mercury’s surface, as well as up-close images of Mercury’s terrain, which includes the spectacular Caloris Basin, an 800-mile-wide impact crater that is one of the largest in the solar system.

Head and the Brown students, along with the rest of the MESSENGER science teams, will use the data from the mission to better understand Mercury’s volcanic history, the origin of its craters, and the ages of different surface rock units.

This information will answer fundamental questions about the formation of Mercury, the planet closest to the Sun. Along with information on Mercury’s geological composition and evolution, MESSENGER instruments will also give scientists a better understanding of the planet’s magnetic field, its gravity field, its atmosphere and its iron core.

“In the 50 years since Sputnik, more than 30 spacecraft have been sent to the Moon, yet only now is a second spacecraft hurtling toward Mercury,” Head said. “The MESSENGER mission is a ground-breaking effort, one that will address key questions about this enigmatic planet.”

Editors: Brown University has a fiber link television studio available for domestic and international live and taped interviews and maintains an ISDN line for radio interviews. For more information, call the Office of Media Relations at (401) 863-2476.

Wendy Lawton | EurekAlert!
Further information:
http://www.brown.edu

More articles from Earth Sciences:

nachricht NASA examines Peru's deadly rainfall
24.03.2017 | NASA/Goddard Space Flight Center

nachricht Steep rise of the Bernese Alps
24.03.2017 | Universität Bern

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>