Brown Planetary Geologists Lend Expertise to Mercury Mission

What lies on the uncharted side of mysterious Mercury, the smallest planet in the solar system? Brown University students, led by planetary geologist James Head, will study never-before-seen images of Mercury when a NASA spacecraft makes the first visit to Mercury in nearly 33 years.

On Monday, Jan. 14, 2008, the NASA spacecraft MESSENGER (MErcury Surface, Space ENvironment, GEochemistry, and Ranging) will begin collecting more than 1,200 images of Mercury’s ancient Moon-like surface, which is filled with wide craters, rocky plains and curved cliffs. The images will be unprecedented: When the Mariner 10 probe made its final Mercury flyby in 1975, it left with images from less than half the planet.

Determining the composition of rocks on Mercury’s surface, as well as the age and origin of these rocks, will be the central work of MESSENGER’s geology group. James Head, a planetary geologist and the Louis and Elizabeth Scherck Distinguished Professor at Brown, is leading this international team of scientists as well as a cadre of Brown students involved in the mission.

The MESSENGER mission, part of NASA’s Discovery program, is led by Sean Solomon, a geophysicist at the Carnegie Institution of Washington.

“This is pioneering work,” Head said. “When data from MESSENGER starts coming in, we’ll be seeing terrain no human has ever seen before. And when you don’t know what one half of a planet looks like, you’re in for some surprises.”

On Monday, Head and graduate students Laura Kerber and Debra Hurwitz, along with research analyst Jay Dickson, will be at the Johns Hopkins University Applied Physics Laboratory in Maryland to join in MESSENGER lead operations and data analysis. Graduate student Caleb Fassett will lead a “home team” of students from the Department of Geological Sciences, who will begin to study geological data down-linked from the MESSENGER probe.

The spacecraft is equipped with a camera and other instruments that will provide information on the mineralogical and chemical composition of Mercury’s surface, as well as up-close images of Mercury’s terrain, which includes the spectacular Caloris Basin, an 800-mile-wide impact crater that is one of the largest in the solar system.

Head and the Brown students, along with the rest of the MESSENGER science teams, will use the data from the mission to better understand Mercury’s volcanic history, the origin of its craters, and the ages of different surface rock units.

This information will answer fundamental questions about the formation of Mercury, the planet closest to the Sun. Along with information on Mercury’s geological composition and evolution, MESSENGER instruments will also give scientists a better understanding of the planet’s magnetic field, its gravity field, its atmosphere and its iron core.

“In the 50 years since Sputnik, more than 30 spacecraft have been sent to the Moon, yet only now is a second spacecraft hurtling toward Mercury,” Head said. “The MESSENGER mission is a ground-breaking effort, one that will address key questions about this enigmatic planet.”

Editors: Brown University has a fiber link television studio available for domestic and international live and taped interviews and maintains an ISDN line for radio interviews. For more information, call the Office of Media Relations at (401) 863-2476.

Media Contact

Wendy Lawton EurekAlert!

More Information:

http://www.brown.edu

All latest news from the category: Earth Sciences

Earth Sciences (also referred to as Geosciences), which deals with basic issues surrounding our planet, plays a vital role in the area of energy and raw materials supply.

Earth Sciences comprises subjects such as geology, geography, geological informatics, paleontology, mineralogy, petrography, crystallography, geophysics, geodesy, glaciology, cartography, photogrammetry, meteorology and seismology, early-warning systems, earthquake research and polar research.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors