Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Evidence of glaciation in 'super greenhouse' world

14.01.2008
Ice sheets existed when alligators lived in the Arctic

Large ice-sheets existed on Earth about 91 million years ago, during one of the warmest periods since life began, an international team of scientists reports this week.

The findings, published in the journal 'Science', challenges the popular assumption that large glaciers could not have existed in the 'super greenhouse' climate, when tropical surface ocean temperatures reached as high as 35-37C (95-98.6F) and alligators lived in the Arctic.

Scientists from the USA, UK, Germany and Netherlands found evidence of an approximate 200,000 year period of widespread glaciation during the Turonian 'super-greenhouse' period of the Cretaceous, with ice sheets about 60 per cent the size of the modern Antarctic ice cap.

The team obtained their evidence from detailed analyses of sediments that were deposited in the western Equatorial Atlantic Ocean at that time.

The sediments, recovered by drilling into the ocean floor off Suriname in South America, contained fossil shells of tiny sea creatures, foraminifera, that lived in the Cretaceous seas.

These shells 'captured' chemicals that were present at the time, providing the researchers with clues about the temperature, composition and salinity of the seawater. Scientists at the Scripps Institution of Oceanography in the USA were able to use this information to reconstruct sea temperature, both at the surface and at depth.

Meanwhile, a European team at Newcastle University in the UK, the University of Cologne in Germany and the Royal Netherlands Institute for Sea Research (NIOZ), studied the composition of organic molecules in the same sediments, providing separate evidence about the temperature of the surface water during this period of time.

By combining these two lines of data, the team was able to identify temperature and chemical changes in the ocean that are consistent with periods of glacial formation.

Professor Thomas Wagner, of the School of Civil Engineering and Geosciences and the Institute for Research on Environment and Sustainability at Newcastle University, said: 'Speculation about whether large ice caps could have formed during short periods of the Earth's warmest interval has a long history in Geology and climate research, but there has never been final conclusive evidence.

'This uncertainty remained, as there is very little direct evidence from high latitude rocks supporting or disproving the concept; also computer simulations have difficulties to accurately model climate conditions at polar latitudes during past greenhouse conditions'.

'Our research from tropical marine sediments provides strong evidence that large ice sheets indeed did exist for short periods of the Cretaceous, despite the fact that the world was a much hotter place than it is today, or is likely to be in the near future'.

Professor Jaap S. Damste from the Royal NIOZ added: 'The results are consistent with independent evidence from Russia and the USA that sea level fell by about 25-40 metres at this time. Sea level is known to fall as water is removed from the oceans to build continental ice-sheets and to rise as ice melts and returns to the sea. Today, the Antarctic ice cap stores enough water to raise sea level by about 60 metres if the whole mass melted and flowed back into the ocean.'

Dr Andre Bornmann, who led the research at Scripps Institute of Oceanography, University of California, together with Professor Richard Norris, and who has since moved to Leipzig University in Germany, said it was not clear where such a large mass of ice could have existed in the Cretaceous period or how ice growth could have started. 'This study demonstrates that even the super-warm climates of the Cretaceous Thermal Maximum were not warm enough to always prevent ice growth. Certainly, ice sheets were much less common during the Cretaceous Thermal Maximum than they are during more recent 'Icehouse' climates, allowing tropical plants and animals like breadfruit trees and alligators to frequent the high arctic. However, paradoxically past greenhouse climates may actually have aided ice growth by increasing the amount of moisture in the atmosphere and creating more winter snowfall at high elevations and high latitudes,' he said. The findings of this study provide compelling support for another related study published by Fletcher and co-authors from The University of Sheffield and Yale in the January 2008 issue of the journal, Nature Geoscience (first published online, 9 December 2007). In their study, Fletcher and co-authors reconstructed atmospheric carbon dioxide concentrations for the Mesozoic and early Cenozoic below the simulated threshold for the initiation of widespread glaciation on several occasions and speculated on the repetitive occurrence of cold intervals in a general greenhouse world.

Technical notes on methodology:

The research team obtained their evidence from detailed geochemical and isotopic analyses of organic carbon-rich sediments that were deposited in the western Equatorial Atlantic at Demerara Rise off Surinam during the Cretaceous.

The sediments were recovered during the Ocean Drilling Program Leg 207 and contained glassy carbonate shells of tiny sea creatures, foraminifera, that lived in the Cretaceous seas. The fossil shells consist of pristine carbonate, which contain oxygen and other elements. By analysing the different types of oxygen atoms (isotopes) in these shells scientists at the Scripps Institution of Oceanography in the USA were able to reconstruct sea temperature, both at the surface and at depth. Meanwhile, a European team at the Universities of Newcastle and Cologne in the UK and Germany, and the Royal Netherlands Institute for Sea Research (NIOZ) in the Netherlands studied the composition of organic molecules of membrane lipids from archea in exactly the same sediments, providing an independent temperature record of surface waters for the Cretaceous western tropical Atlantic. Because the growth of continental ice enriches seawater in oxygen-18 (the isotope of oyygen with an atomic mass of 18), the " oxygen-18 chemistry, when constrained by biomarker temperature estimates, was used to estimate the size of continental ice sheets. By combining these two lines of data, the team was able to show that differences in the records of the tropical oceans were consistent with periods of glacial formation.

Mick Warwicker | EurekAlert!
Further information:
http://www.ncl.ac.uk

More articles from Earth Sciences:

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>