Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Earth's Moving Crust May Occasionally Stop

11.01.2008
The motion, formation, and recycling of Earth’s crust—commonly known as plate tectonics—have long been thought to be continuous processes. But new research by geophysicists suggests that plate tectonic motions have occasionally stopped in Earth’s geologic history, and may do so again. The findings could reshape our understanding of the history and evolution of the Earth’s crust and continents.

Synthesizing a wide range of observations and constructing a new theoretical model, researchers Paul Silver of the Carnegie Institution of Washington and Mark Behn of the Woods Hole Oceanographic Institution (WHOI) have found evidence that the process of subduction has effectively stopped at least once in Earth’s past. Subduction occurs where two pieces of Earth’s crust (tectonic plates) collide, and one dives beneath the other back into the interior of the planet.

Most of the major geologic processes on Earth—the formation of continents, the birth of volcanic island arcs, the opening and closing of ocean basins—are driven by tectonic plate motions and intimately linked to subduction and to seafloor spreading. If those processes were shut down, there would likely be a global decrease in earthquakes and volcanism.

Today, the vast majority of subduction occurs around the edges of the Pacific Ocean, which is slowly closing as the Atlantic Ocean opens. In roughly 350 million years, researchers estimate that the Pacific basin will be effectively closed and a new supercontinent will be formed.

Closure of the Pacific basin could shut down most of the Earth’s capacity for subduction, unless the process begins somewhere else on the planet. However, there is no evidence that subduction is currently expanding or initiating anywhere else on the planet.

Though such a shutdown defies the prevailing wisdom about plate tectonics, Silver and Behn read the geologic evidence to suggest that just such a dramatic decrease in subduction happened about one billion years ago, after the formation of the supercontinent Rodinia.

Their findings—captured in a paper entitled “Intermittent Plate Tectonics?”—were published in the January 4 issue of the journal Science.

“The scientific community has typically assumed that plate tectonics is an active and continuous process, that new crust is constantly being formed while old crust is recycled,” said Behn, an assistant scientist in the WHOI Department of Geology and Geophysics. “But the evidence suggests that plate tectonics may not be continuous. Plates may move actively at times, then stop or slow down, and then start up again.”

Behn and Silver started their investigation by considering how the Earth releases heat from its interior over time, also known as “thermal evolution.” If you take the rate at which the Earth is releasing heat from its interior today and project that rate backwards in time, you arrive at impossibly high and unsustainable numbers for the heat and energy contained in the early Earth. Specifically, if the planet has been releasing heat at the modern rate for all of its history, then it would have been covered with a magma ocean as recently as one billion years ago.

But we know this is not true, Behn said, because there is geological evidence for past continents and supercontinents, not to mention rocks (ophiolites) on the edges of old plate boundaries that are more than one billion years old.

The Earth cools more quickly during periods of rapid plate motions, as warm material is pulled upward from deep in the Earth’s interior and cools beneath spreading ridges.

“If you stir a cup of coffee, it cools faster,” said Behn. “That’s why people blow on their coffee to get the surface moving.”

“It is a similar process within the Earth," Behn added. "If the tectonic plates are moving, the Earth releases more heat and cools down faster. If you don’t have those cracked and moving plates, then heat has to get out by diffusing through the solid rock, which is much slower.”

Periods of slow or no subduction would help explain how the Earth still has so much heat to release today, since some of it would have been capped beneath the crust.

Silver and Behn conclude their paper by suggesting that there is a cycle to plate tectonics, with periods when the shifting and sliding of the crust is more active and times when it is less so. Rather than being continuous, plate tectonics may work intermittently through Earth history, turning on and off as the planet remakes itself.

The Woods Hole Oceanographic Institution is a private, independent organization in Falmouth, Mass., dedicated to marine research, engineering, and higher education. Established in 1930 on a recommendation from the National Academy of Sciences, its primary mission is to understand the oceans and their interaction with the Earth as a whole, and to communicate a basic understanding of the ocean's role in the changing global environment.

The Carnegie Institution of Washington has been a pioneering force in basic scientific research since 1902. It is a private, nonprofit organization with six research departments throughout the U.S. Carnegie scientists are leaders in plant biology, developmental biology, astronomy, materials science, global ecology, and Earth and planetary science.

Media Relations | EurekAlert!
Further information:
http://www.whoi.edu

More articles from Earth Sciences:

nachricht Novel method for investigating pore geometry in rocks
18.06.2018 | Kyushu University, I2CNER

nachricht Decades of satellite monitoring reveal Antarctic ice loss
14.06.2018 | University of Maryland

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Creating a new composite fuel for new-generation fast reactors

20.06.2018 | Materials Sciences

Game-changing finding pushes 3D-printing to the molecular limit

20.06.2018 | Materials Sciences

Could this material enable autonomous vehicles to come to market sooner?

20.06.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>