Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Earthquake 'memory' could spur aftershocks

07.01.2008
Experiment indicates sound waves can trigger quakes

Using a novel device that simulates earthquakes in a laboratory setting, a Los Alamos researcher and his colleagues have shown that seismic waves—the sounds radiated from earthquakes—can induce earthquake aftershocks, often long after a quake has subsided.

The research provides insight into how earthquakes may be triggered and how they recur.

In a letter appearing today in Nature, Los Alamos researcher Paul Johnson and colleagues Heather Savage, Mike Knuth, Joan Gomberg, and Chris Marone show how wave energy can be stored in certain types of granular materials—like the type found along certain fault lines across the globe—and how this stored energy can suddenly be released as an earthquake when hit by relatively small seismic waves far beyond the traditional “aftershock zone” of a main quake.

Perhaps most surprising, researchers have found that the release of energy can occur minutes, hours, or even days after the sound waves pass; the cause of the delay remains a tantalizing mystery.

Earthquakes happen when the Earth’s crust slips along cracks, known as faults. Major faults can be found at the junction of independently moving masses of crust and mantle, known as tectonic plates.

Each earthquake releases seismic waves—vibrations at the cusp, or below the range of human hearing—that travel through the Earth. These waves can trigger aftershocks in a zone several to tens of miles away from the radiating main earthquake, known as a “mainshock.” Most aftershocks usually occur within hours to days after the mainshock.

Researchers often have assumed that seismic waves beyond the immediate aftershock zone were too weak to trigger aftershocks. However, Gomberg and others have proven that seismic activity sometimes increases at least thousands of miles away after an earthquake.

“At these farther distances, earthquake triggering doesn’t happen all the time,” said Johnson. “The question always was why? What was going on in certain regions that lead to triggering? The challenge was whether we could go into the laboratory and mimic the conditions that go on inside the Earth and find out.”

The answer to the challenge lay at Pennsylvania State University, where Marone had developed an apparatus that mimics earthquakes by pressing plates atop a layer of tiny glass beads. When enough energy is applied to the plates, they slip, like tectonic plates above the mantle.

Johnson wondered whether sound waves could induce earthquakes in such a system. His colleagues originally believed sound would have no effect.

Much to their surprise, the earthquake machine revealed that when sound waves were applied for a short period just before the quake, they could induce smaller quakes, or, in some instances, delay the occurrence of the next major one. The sound waves seemed to affect earthquake behavior for as many as 10 earthquake events after they were applied.

More surprising still, the team found that the granular beads could store a “memory” even after the system had undergone a quake and the beads had rearranged themselves.

“The memory part is the most puzzling,” Johnson said, “because during an earthquake there is so much energy being released and the event is so violent that you have to wonder, why doesn’t the system reset itself?”

The research has helped confirm that earthquakes are periodic events and that sound can disrupt them.

But catastrophic events in other granular media—such as avalanches or the sudden collapse of sand dunes—could help provide clues into the physics of earthquakes, and could help Johnson and his colleagues begin to unravel the mystery of stored memory in granular systems.

“What we’ve created in the laboratory has provided the basis for an understanding of dynamic triggering of earthquakes, something that has mystified people for years,” said Johnson.

James E. Rickman | EurekAlert!
Further information:
http://www.lanl.gov

More articles from Earth Sciences:

nachricht Early organic carbon got deep burial in mantle
25.04.2017 | Rice University

nachricht New atlas provides highest-resolution imagery of the Polar Regions seafloor
25.04.2017 | British Antarctic Survey

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>