Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Earthquake 'memory' could spur aftershocks

07.01.2008
Experiment indicates sound waves can trigger quakes

Using a novel device that simulates earthquakes in a laboratory setting, a Los Alamos researcher and his colleagues have shown that seismic waves—the sounds radiated from earthquakes—can induce earthquake aftershocks, often long after a quake has subsided.

The research provides insight into how earthquakes may be triggered and how they recur.

In a letter appearing today in Nature, Los Alamos researcher Paul Johnson and colleagues Heather Savage, Mike Knuth, Joan Gomberg, and Chris Marone show how wave energy can be stored in certain types of granular materials—like the type found along certain fault lines across the globe—and how this stored energy can suddenly be released as an earthquake when hit by relatively small seismic waves far beyond the traditional “aftershock zone” of a main quake.

Perhaps most surprising, researchers have found that the release of energy can occur minutes, hours, or even days after the sound waves pass; the cause of the delay remains a tantalizing mystery.

Earthquakes happen when the Earth’s crust slips along cracks, known as faults. Major faults can be found at the junction of independently moving masses of crust and mantle, known as tectonic plates.

Each earthquake releases seismic waves—vibrations at the cusp, or below the range of human hearing—that travel through the Earth. These waves can trigger aftershocks in a zone several to tens of miles away from the radiating main earthquake, known as a “mainshock.” Most aftershocks usually occur within hours to days after the mainshock.

Researchers often have assumed that seismic waves beyond the immediate aftershock zone were too weak to trigger aftershocks. However, Gomberg and others have proven that seismic activity sometimes increases at least thousands of miles away after an earthquake.

“At these farther distances, earthquake triggering doesn’t happen all the time,” said Johnson. “The question always was why? What was going on in certain regions that lead to triggering? The challenge was whether we could go into the laboratory and mimic the conditions that go on inside the Earth and find out.”

The answer to the challenge lay at Pennsylvania State University, where Marone had developed an apparatus that mimics earthquakes by pressing plates atop a layer of tiny glass beads. When enough energy is applied to the plates, they slip, like tectonic plates above the mantle.

Johnson wondered whether sound waves could induce earthquakes in such a system. His colleagues originally believed sound would have no effect.

Much to their surprise, the earthquake machine revealed that when sound waves were applied for a short period just before the quake, they could induce smaller quakes, or, in some instances, delay the occurrence of the next major one. The sound waves seemed to affect earthquake behavior for as many as 10 earthquake events after they were applied.

More surprising still, the team found that the granular beads could store a “memory” even after the system had undergone a quake and the beads had rearranged themselves.

“The memory part is the most puzzling,” Johnson said, “because during an earthquake there is so much energy being released and the event is so violent that you have to wonder, why doesn’t the system reset itself?”

The research has helped confirm that earthquakes are periodic events and that sound can disrupt them.

But catastrophic events in other granular media—such as avalanches or the sudden collapse of sand dunes—could help provide clues into the physics of earthquakes, and could help Johnson and his colleagues begin to unravel the mystery of stored memory in granular systems.

“What we’ve created in the laboratory has provided the basis for an understanding of dynamic triggering of earthquakes, something that has mystified people for years,” said Johnson.

James E. Rickman | EurekAlert!
Further information:
http://www.lanl.gov

More articles from Earth Sciences:

nachricht NASA finds newly formed tropical storm lan over open waters
17.10.2017 | NASA/Goddard Space Flight Center

nachricht The melting ice makes the sea around Greenland less saline
16.10.2017 | Aarhus University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>