Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

2 explosive evolutionary events shaped early history of multicellular life

07.01.2008
Scientists have known for some time that most major groups of complex animals appeared in the fossils record during the Cambrian Explosion, a seemingly rapid evolutionary event that occurred 542 million years ago.

Now Virginia Tech paleontologists, using rigorous analytical methods, have identified another explosive evolutionary event that occurred about 33 million years earlier among macroscopic life forms unrelated to the Cambrian animals. They dubbed this earlier event the "Avalon Explosion."

The discovery, reported in the January 4 issue of Science, suggests that more than one explosive evolutionary event may have taken place during the early evolution of animals.

The Cambrian explosion event refers to the sudden appearance of most animal groups in a geologically short time period between 542 and 520 million years ago, in the early Cambrian Period. Although there were not as many animal species as in modern oceans, most (if not all) living animal groups were represented in the Cambrian oceans. "The explosive evolutionary pattern was a concern to Charles Darwin, because he expected that evolution happens at a slow and constant pace," said Shuhai Xiao, associate professor of geobiology at Virginia Tech. “Darwin’s perception could be represented by an inverted cone with ever expanding morphological range, but the fossil record of the Cambrian Explosion and since is better represented by a cylinder with a morphological radiation at the base and morphological constraint afterwards.”

Darwin reckoned that there should be long and hidden periods of animal evolution before the Cambrian Explosion, Xiao said.

But paleontologists have not found such evidence, and recently scientists have learned that biological evolution has not been moving on a smooth road. “Accelerated rates may characterize the early evolution of many groups of organisms,” said Michal Kowalewski, professor of geobiology at Virginia Tech.

To test whether other major branches of life also evolved in an abrupt and explosive manner, Virginia Tech graduate students Bing Shen and Lin Dong, along with Xiao and Kowalewski, analyzed the Ediacara fossils: the oldest complex, multicellular organisms that had lived in oceans from 575 to 542 million years ago; that is, before the Cambrian Explosion of animals. "These Ediacara organisms do not have an ancestor-descendant relationship with the Cambrian animals, and most of them went extinct before the Cambrian Explosion," said Shen. “And this group of organisms – most species – seems to be distinct from the Cambrian animals.”

But how did those Ediacara organisms first evolve, Shen asked. Did they also appear in an explosive evolutionary event, or is the Cambrian Explosion a truly unparalleled event"

“We identified 50 characters and mapped the distribution of these characters in more than 200 Ediacara species. These species cover three evolutionary stages of the entire Ediacara history across 33 million years,” said Shen.

The three successive evolutionary stages are represented by the Avalon, White Sea, and Nama assemblages (all named after localities where representative fossils of each stage can be found). The earliest Avalon stage was represented by relatively few species.

Surprisingly, however, as shown by Shen and colleagues, these earliest Ediacara life forms already occupied a full morphological range of body plans that would ever be realized through the entire history of Ediacara organisms. "In other words, major types of Ediacara organisms appeared at the dawn of their history, during the Avalon Explosion," Dong said. "Subsequently, Ediacara organisms diversified in White Sea time and then declined in Nama time. But, despite this notable waxing and waning in the number of species, the morphological range of the Avalon organisms were never exceeded through the subsequent history of Ediacara."

Kowalewski said their research team had not anticipated the discovery. “Using the scientific literature, we were trying to create a more rigorous reconstruction of the morphological history of Ediacara organisms,” he said.

The process involved adapting quantitative methods that had been used previously for studying morphological evolution of animals, but never applied to the enigmatic Ediacara organisms. “We think of diversity in terms of individual species. But species may be very similar in their overall body plan. For example, 50 species of fly may not differ much from one another in terms of their overall shape – they all represent the same body plan. On the other hand, a set of just three species that include a fly, a frog and an earthworm represent much more morphological variation. We can thus think of biodiversity not only in terms of how many different species there are but also how many fundamentally distinct body plans are being represented. Our approach combined both those approaches,” said Kowalewski.

“In addition, the method relies on converting different morphologies into numerical (binary) data. This strategy allows us to describe, more objectively and more consistently, enigmatic fossil life forms, which are preserved mostly as two-dimensional impressions and are not understood well in terms of function, ecology, or physiology,” Kowalewski said.

Scientists are still unsure what were the driving forces behind the rapid morphological expansion during the Avalon explosion, and why the morphological range did not expand, shrink, or shift during the subsequent White Sea and Nama stages.

"But, one thing seems certain -- the evolution of earliest macroscopic and complex life also went through an explosive event before to the Cambrian Explosion,” Xiao said. “It now appears that at the dawn of the macroscopic life, between 575 and 520 million years ago, there was not one, but at least two major episodes of abrupt morphological expansion."

Susan Trulove | EurekAlert!
Further information:
http://www.vt.edu
http://www.paleo.geos.vt.edu/Shuhai/
http://www.geos.vt.edu/people/michalk/

More articles from Earth Sciences:

nachricht PR of MCC: Carbon removal from atmosphere unavoidable for 1.5 degree target
22.05.2018 | Mercator Research Institute on Global Commons and Climate Change (MCC) gGmbH

nachricht Monitoring lava lake levels in Congo volcano
16.05.2018 | Seismological Society of America

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>