Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

2 explosive evolutionary events shaped early history of multicellular life

07.01.2008
Scientists have known for some time that most major groups of complex animals appeared in the fossils record during the Cambrian Explosion, a seemingly rapid evolutionary event that occurred 542 million years ago.

Now Virginia Tech paleontologists, using rigorous analytical methods, have identified another explosive evolutionary event that occurred about 33 million years earlier among macroscopic life forms unrelated to the Cambrian animals. They dubbed this earlier event the "Avalon Explosion."

The discovery, reported in the January 4 issue of Science, suggests that more than one explosive evolutionary event may have taken place during the early evolution of animals.

The Cambrian explosion event refers to the sudden appearance of most animal groups in a geologically short time period between 542 and 520 million years ago, in the early Cambrian Period. Although there were not as many animal species as in modern oceans, most (if not all) living animal groups were represented in the Cambrian oceans. "The explosive evolutionary pattern was a concern to Charles Darwin, because he expected that evolution happens at a slow and constant pace," said Shuhai Xiao, associate professor of geobiology at Virginia Tech. “Darwin’s perception could be represented by an inverted cone with ever expanding morphological range, but the fossil record of the Cambrian Explosion and since is better represented by a cylinder with a morphological radiation at the base and morphological constraint afterwards.”

Darwin reckoned that there should be long and hidden periods of animal evolution before the Cambrian Explosion, Xiao said.

But paleontologists have not found such evidence, and recently scientists have learned that biological evolution has not been moving on a smooth road. “Accelerated rates may characterize the early evolution of many groups of organisms,” said Michal Kowalewski, professor of geobiology at Virginia Tech.

To test whether other major branches of life also evolved in an abrupt and explosive manner, Virginia Tech graduate students Bing Shen and Lin Dong, along with Xiao and Kowalewski, analyzed the Ediacara fossils: the oldest complex, multicellular organisms that had lived in oceans from 575 to 542 million years ago; that is, before the Cambrian Explosion of animals. "These Ediacara organisms do not have an ancestor-descendant relationship with the Cambrian animals, and most of them went extinct before the Cambrian Explosion," said Shen. “And this group of organisms – most species – seems to be distinct from the Cambrian animals.”

But how did those Ediacara organisms first evolve, Shen asked. Did they also appear in an explosive evolutionary event, or is the Cambrian Explosion a truly unparalleled event"

“We identified 50 characters and mapped the distribution of these characters in more than 200 Ediacara species. These species cover three evolutionary stages of the entire Ediacara history across 33 million years,” said Shen.

The three successive evolutionary stages are represented by the Avalon, White Sea, and Nama assemblages (all named after localities where representative fossils of each stage can be found). The earliest Avalon stage was represented by relatively few species.

Surprisingly, however, as shown by Shen and colleagues, these earliest Ediacara life forms already occupied a full morphological range of body plans that would ever be realized through the entire history of Ediacara organisms. "In other words, major types of Ediacara organisms appeared at the dawn of their history, during the Avalon Explosion," Dong said. "Subsequently, Ediacara organisms diversified in White Sea time and then declined in Nama time. But, despite this notable waxing and waning in the number of species, the morphological range of the Avalon organisms were never exceeded through the subsequent history of Ediacara."

Kowalewski said their research team had not anticipated the discovery. “Using the scientific literature, we were trying to create a more rigorous reconstruction of the morphological history of Ediacara organisms,” he said.

The process involved adapting quantitative methods that had been used previously for studying morphological evolution of animals, but never applied to the enigmatic Ediacara organisms. “We think of diversity in terms of individual species. But species may be very similar in their overall body plan. For example, 50 species of fly may not differ much from one another in terms of their overall shape – they all represent the same body plan. On the other hand, a set of just three species that include a fly, a frog and an earthworm represent much more morphological variation. We can thus think of biodiversity not only in terms of how many different species there are but also how many fundamentally distinct body plans are being represented. Our approach combined both those approaches,” said Kowalewski.

“In addition, the method relies on converting different morphologies into numerical (binary) data. This strategy allows us to describe, more objectively and more consistently, enigmatic fossil life forms, which are preserved mostly as two-dimensional impressions and are not understood well in terms of function, ecology, or physiology,” Kowalewski said.

Scientists are still unsure what were the driving forces behind the rapid morphological expansion during the Avalon explosion, and why the morphological range did not expand, shrink, or shift during the subsequent White Sea and Nama stages.

"But, one thing seems certain -- the evolution of earliest macroscopic and complex life also went through an explosive event before to the Cambrian Explosion,” Xiao said. “It now appears that at the dawn of the macroscopic life, between 575 and 520 million years ago, there was not one, but at least two major episodes of abrupt morphological expansion."

Susan Trulove | EurekAlert!
Further information:
http://www.vt.edu
http://www.paleo.geos.vt.edu/Shuhai/
http://www.geos.vt.edu/people/michalk/

More articles from Earth Sciences:

nachricht NASA sees quick development of Hurricane Dora
27.06.2017 | NASA/Goddard Space Flight Center

nachricht Collapse of the European ice sheet caused chaos
27.06.2017 | CAGE - Center for Arctic Gas Hydrate, Climate and Environment

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>