Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Climatic chain reaction caused runaway greenhouse effect 55 million years ago

In its December 20 issue, Nature reports new findings regarding a phase of rapid global greenhouse warming that took place 55 million years ago. This period of climate change is regarded as the best fossil analogue to current and future greenhouse warming.

Lead author is Appy Sluijs (Utrecht University, The Netherlands) and co-authors include Henk Brinkhuis, Gert-Jan Reichart (both from Utrecht University), Stefan Schouten (Royal Netherlands Institute for Sea Research: NIOZ), Jaap Sinninghe Damsté (NIOZ, UU), James C. Zachos (University of California at Santa Cruz), and Gerald R. Dickens (Rice University).

Analogous to the Earth's current situation, greenhouse warming 55 million years ago was caused by a relatively rapid increase of CO2 concentrations in the atmosphere. This phase, known as the Paleocene-Eocene thermal maximum (PETM), was studied using sediments that accumulated 55 million years ago on the ocean floor in what is now New Jersey. The new study shows that a large proportion of the greenhouse gases was released as a result of a chain-reaction of events. Probably due to intense volcanic activity, CO2 concentrations in the atmosphere became higher and the ensuing greenhouse effect warmed the Earth. As a result, submarine methane hydrates (ice-like structures in which massive amounts of methane are stored) melted and released large amounts of methane into the atmosphere. This further amplified the magnitude of global warming, which comprised about 6o C in total. The study is the first to show such a chain reaction during rapid warming in a 'greenhouse world'.

The new research confirms that global warming can stimulate mechanisms that release massive amounts of stored carbon into the atmosphere. Current and future warming will likely see similar effects, such as methane hydrate dissociation, adding additional greenhouse gases to those resulting from fossil fuel burning.

Last year, the same group of researchers showed in Nature that tropical algae migrated into the Arctic Ocean during the PETM, when temperatures rose to 24oC. Current climate models are not capable of simulating such high temperatures in the Arcti, which has repercussions for the predictions of future climate change. In addition to Al Gore’s presentation, this type of research shows what a greenhouse world looks like, including palm trees and crocodiles in the Arctic.

Earth and Sustainability
Utrecht University has organised its top-level research into fifteen focus areas, which are intended to promote high-quality research and contribute to solving major problems in society. The study described above falls under the category 'Earth and Sustainability', where research is conducted into many of the Earth's processes and how they relate to the countless dangers threatening life on Earth. This category also includes research on climate, energy, and sustainability and nanotechnologies. For more information, please visit
Nature Article
‘Environmental precursors to rapid light carbon injection at the Palaeocene/Eocene boundary’ by Appy Sluijs, Henk Brinkhuis, Stefan Schouten, Steven M. Bohaty, Cédric M. John, James C. Zachos, Gert-Jan Reichart, Jaap S. Sinninghe Damsté, Erica M. Crouch & Gerald R. Dickens.

Peter van der Wilt | alfa
Further information:

More articles from Earth Sciences:

nachricht Receding glaciers in Bolivia leave communities at risk
20.10.2016 | European Geosciences Union

nachricht UM researchers study vast carbon residue of ocean life
19.10.2016 | University of Miami Rosenstiel School of Marine & Atmospheric Science

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>