Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tiny dust particles from Asian deserts common over western United States

17.12.2007
It has been a decade since University of Washington scientists first pinpointed specific instances of air pollution, including Gobi Desert dust, traversing the Pacific Ocean and adding to the mix of atmospheric pollution already present along the West Coast of North America.

Now a UW researcher is finding that dust from the Gobi and Taklimakan deserts in China and Mongolia is routinely present in the air over the western United States during spring months.

"We are interested in Asian dust that comes across the Pacific because particles can have an impact on health, as well as on visibility," said Emily Fischer, a UW doctoral student in atmospheric sciences.

"Most previous work has been very event specific, but this research looks at how the average background aerosol concentrations vary on a year-to-year basis."

Aerosols are tiny particles – such as dust, grains of sea salt, soot from fossil fuel combustion and smoke from forest fires – suspended in the air. Many of the aerosols are comparatively large, as much as 10 microns, which still is less than the width of a human hair.

Fischer found that in years with large Asian dust storms there was an increase in particles of 2.5 microns or less in the air over the western United States. Particles that small can be inhaled more deeply into the lungs and so are a greater health concern.

"Local pollution makes the biggest contribution to poor air quality in cities, but my study is looking at aerosols in remote regions like national parks," she said. "In these places dust can be a larger contributor to the total aerosol concentrations because there is little local pollution. While some of the dust pulses from Asia are small, some of them can be very large."

Fischer used two sets of data, gathered during March, April and May from 1998 through 2006, to correlate the dust kicked up in storms over Asian deserts and the appearance of dust in air over the western United States. She looked at dust levels in the air columns directly over the deserts, recorded by NASA satellites, and then paired that information with air quality data from ground stations in rural areas of the western United States for the same period.

The research is being presented at this year's annual meeting of the American Geophysical Union in San Francisco.

For the dust detected at ground stations in the United States, Fischer also looked for – and found – evidence of calcium, which is a tracer for desert dust.

"The calcium lends more confidence to our conclusion," she said.

While the results of the research are not unexpected, they provide supporting evidence that particles of 2.5 microns or smaller appear in higher concentrations in the western United States in years when there are high dust concentrations over Asian deserts.

"The transport of dust across the Pacific is not a new phenomenon," Fischer said. "But we are just beginning to understand it and quantify it on a year-to-year basis instead of on a case-by-case basis.

"We know that just having dust over Asia doesn't mean that it's going to come here. There is the transportation part of the puzzle, which I'm working on now. But we already know that some years are more favorable than others for dust to be transported across the Pacific."

Vince Stricherz | EurekAlert!
Further information:
http://www.washington.edu

More articles from Earth Sciences:

nachricht Climate satellite: Tracking methane with robust laser technology
22.06.2017 | Fraunhofer-Gesellschaft

nachricht How reliable are shells as climate archives?
21.06.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>