Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Without its insulating ice cap, Arctic surface waters warm to as much as 5 C above average

14.12.2007
Record-breaking amounts of ice-free water have deprived the Arctic of more of its natural "sunscreen" than ever in recent summers. The effect is so pronounced that sea surface temperatures rose to 5 C above average in one place this year, a high never before observed, says the oceanographer who has compiled the first-ever look at average sea surface temperatures for the region.

Such superwarming of surface waters can affect how thick ice grows back in the winter, as well as its ability to withstand melting the next summer, according to Michael Steele, an oceanographer with the University of Washington's Applied Physics Laboratory. Indeed, since September, the end of summer in the Arctic, winter freeze-up in some areas is two months later than usual.

The extra ocean warming also might be contributing to some changes on land, such as previously unseen plant growth in the coastal Arctic tundra, if heat coming off the ocean during freeze-up is making its way over land, says Steele, who is speaking Wednesday at the American Geophysical Union meeting in San Francisco.

He is lead author of "Arctic Ocean surface warming trends over the past 100 years," accepted for publication in AGU's Geophysical Research Letters. Co-authors are physicist Wendy Ermold and research scientist Jinlun Zhang, both of the UW Applied Physics Laboratory. The work is funded by the National Science Foundation.

"Warming is particularly pronounced since 1995, and especially since 2000," the authors write. The spot where waters were 5 C above average was in the region just north of the Chakchi Sea. The historical average temperature there is -1 C – remember that the salt in ocean water keeps it liquid at temperatures that would cause fresh water to freeze. This year water in that area warmed to 4 C, for a 5-degree change from the average.

That general area, the part of the ocean north of Alaska and Eastern Siberia that includes the Bering Strait and Chukchi Sea, experienced the greatest summer warming. Temperatures for that region were generally 3.5 C warmer than historical averages and 1.5 C warmer than the historical maximum.

Such widespread warming in those areas and elsewhere in the Arctic is probably the result of having increasing amounts of open water in the summer that readily absorb the sun's rays, Steele says. Hard, white ice, on the other hand, can work as a kind of sunscreen for the waters below, reflecting rather than absorbing sunlight. The warming also may be partly caused by increasing amounts of warmer water coming from the Pacific Ocean, something scientists have noted in recent years.

The Arctic was primed for more open water since the early 1990s as the sea-ice cover has thinned, due to a warming atmosphere and more frequent strong winds sweeping ice out of the Arctic Ocean via Fram Strait into the Atlantic Ocean where the ice melts. The wind effect was particularly strong in the summer of 2007.

Now the situation could be self-perpetuating, Steele says. For example, he calculates that having more heat in surface waters in recent years means 23 to 30 inches less ice will grow in the winter than formed in 1965. Since sea ice typically grows about 80 inches in a winter, that is a significant fraction of ice that's going missing, he says.

Then too, higher sea surface temperatures can delay the start of freeze-up because the extra heat must be discharged from the upper ocean before ice can form. "The effect on net winter growth would probably be negligible for a delay of several weeks, but could be substantial for delays of several months," the authors write.

Sandra Hines | EurekAlert!
Further information:
http://www.washington.edu

More articles from Earth Sciences:

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>