Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Large earthquakes may broadcast warnings, but is anyone tuning in to listen?

14.12.2007
Like geological ninjas, earthquakes can strike without warning. But there may be a way to detect the footfalls of large earthquakes before they strike, alerting their potential victims a week or more in advance. A Stanford professor thinks a method to provide just such warnings may have been buried in the scientific literature for over 40 years.

In October, Japan instituted a nationwide earthquake warning system that heralds the advance of a big earthquake; its sophisticated machinery senses the shaking deep in the earth and transmits a warning signal that can beat the tremors to the surface by seconds.

Antony Fraser-Smith, professor emeritus of electrical engineering and of geophysics, has evidence that big temblors emit a burst of ultra-low-frequency electromagnetic radio waves days or even weeks before they hit. The problem is that nobody is paying enough attention.

Fraser-Smith has been interested in electromagnetic signals for decades. Most of these waves come from space, he said, generated in the upper atmosphere by the sun and then beamed down to Earth.

In 1989, Fraser-Smith and his research team were monitoring ultra-low-frequency radio waves in a remote location in the Santa Cruz Mountains as part of a long-term study of the signals reaching Earth from space. On Oct. 5, 1989, their equipment suddenly reported a large signal, and the signal stayed up for the next 12 days. At 2:00 p.m. on Oct. 17, 1989, the signal jumped even higher, about 20 to 30 times higher than what the instruments would normally ever measure, Fraser-Smith said. At 5:04 p.m. the 7.1 magnitude Loma Prieta earthquake hit the Monterey Bay and San Francisco Bay areas, killing 63 people and causing severe damage across the region.

Fraser-Smith originally thought there was something wrong with the equipment. After ruling out the possibility of technical malfunctions, he and his research team started to think the Loma Prieta quake had quietly announced its impending arrival, and that their equipment just happened to be in the right place at the right time to pick up the message.

"Most scientists necessarily make measurements on small earthquakes because that's what occurs all the time," Fraser-Smith said. "To make a measurement on a large earthquake you have to be lucky, which we were."

Along with Stephen Park, earth sciences professor at the University of California-Riverside, and Frank Morrison, professor emeritus of earth and planetary science at UC-Berkeley, Fraser-Smith continued to study the phenomenon of earthquakes emitting electromagnetic waves through a study funded by the U.S. Geological Survey (USGS).

When the USGS terminated the funding in 1999, he decided to move on to other things. But he was recently drawn back into this issue by a local private company that wanted to use his methods to develop earthquake warning systems.

"I took a new look at the measurements, concentrating entirely on large earthquakes," Fraser-Smith said, "and all of a sudden I could see the forest through the trees."

He found three other studies describing electromagnetic surges before large earthquakes, just as he had found at the Loma Prieta site. The earliest report was from the Great Alaska earthquake (M9.2) in 1964. Up until now, most of the focus for earthquake warnings and predictions has been on seismological studies, but no seismic measurements have ever shown this kind of warning before a big quake, Fraser-Smith said.

This technique will probably only yield results for earthquakes of approximately magnitude 7 or higher, because background waves from the atmosphere will tend to mask any smaller signals. But these are the quakes people are most concerned about anyway, from a safety and damage point of view.

Some seismologists are suspicious that these results are real, Fraser-Smith said. But it would take little effort to verify or disprove them. He is calling for federal funding for a mission-oriented study that would place approximately 30 of the ultra-low-frequency-detecting instruments around the world at hotspots for big quakes. It would cost around $3 million to buy 30 of these machines, he said, which is cheap compared to the cost of many other large studies.

Every year, there are on average 10 earthquakes of magnitude 7 or higher around the world. So within just a few years, he said, you could potentially have 10 new measurements of electromagnetic waves before big quakes-surely enough to determine whether the previous four findings were real.

Louis Bergeron | EurekAlert!
Further information:
http://www.stanford.edu

More articles from Earth Sciences:

nachricht Clear as mud: Desiccation cracks help reveal the shape of water on Mars
20.04.2018 | Geological Society of America

nachricht Hurricane Harvey: Dutch-Texan research shows most fatalities occurred outside flood zones
19.04.2018 | European Geosciences Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>