Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Large earthquakes may broadcast warnings, but is anyone tuning in to listen?

14.12.2007
Like geological ninjas, earthquakes can strike without warning. But there may be a way to detect the footfalls of large earthquakes before they strike, alerting their potential victims a week or more in advance. A Stanford professor thinks a method to provide just such warnings may have been buried in the scientific literature for over 40 years.

In October, Japan instituted a nationwide earthquake warning system that heralds the advance of a big earthquake; its sophisticated machinery senses the shaking deep in the earth and transmits a warning signal that can beat the tremors to the surface by seconds.

Antony Fraser-Smith, professor emeritus of electrical engineering and of geophysics, has evidence that big temblors emit a burst of ultra-low-frequency electromagnetic radio waves days or even weeks before they hit. The problem is that nobody is paying enough attention.

Fraser-Smith has been interested in electromagnetic signals for decades. Most of these waves come from space, he said, generated in the upper atmosphere by the sun and then beamed down to Earth.

In 1989, Fraser-Smith and his research team were monitoring ultra-low-frequency radio waves in a remote location in the Santa Cruz Mountains as part of a long-term study of the signals reaching Earth from space. On Oct. 5, 1989, their equipment suddenly reported a large signal, and the signal stayed up for the next 12 days. At 2:00 p.m. on Oct. 17, 1989, the signal jumped even higher, about 20 to 30 times higher than what the instruments would normally ever measure, Fraser-Smith said. At 5:04 p.m. the 7.1 magnitude Loma Prieta earthquake hit the Monterey Bay and San Francisco Bay areas, killing 63 people and causing severe damage across the region.

Fraser-Smith originally thought there was something wrong with the equipment. After ruling out the possibility of technical malfunctions, he and his research team started to think the Loma Prieta quake had quietly announced its impending arrival, and that their equipment just happened to be in the right place at the right time to pick up the message.

"Most scientists necessarily make measurements on small earthquakes because that's what occurs all the time," Fraser-Smith said. "To make a measurement on a large earthquake you have to be lucky, which we were."

Along with Stephen Park, earth sciences professor at the University of California-Riverside, and Frank Morrison, professor emeritus of earth and planetary science at UC-Berkeley, Fraser-Smith continued to study the phenomenon of earthquakes emitting electromagnetic waves through a study funded by the U.S. Geological Survey (USGS).

When the USGS terminated the funding in 1999, he decided to move on to other things. But he was recently drawn back into this issue by a local private company that wanted to use his methods to develop earthquake warning systems.

"I took a new look at the measurements, concentrating entirely on large earthquakes," Fraser-Smith said, "and all of a sudden I could see the forest through the trees."

He found three other studies describing electromagnetic surges before large earthquakes, just as he had found at the Loma Prieta site. The earliest report was from the Great Alaska earthquake (M9.2) in 1964. Up until now, most of the focus for earthquake warnings and predictions has been on seismological studies, but no seismic measurements have ever shown this kind of warning before a big quake, Fraser-Smith said.

This technique will probably only yield results for earthquakes of approximately magnitude 7 or higher, because background waves from the atmosphere will tend to mask any smaller signals. But these are the quakes people are most concerned about anyway, from a safety and damage point of view.

Some seismologists are suspicious that these results are real, Fraser-Smith said. But it would take little effort to verify or disprove them. He is calling for federal funding for a mission-oriented study that would place approximately 30 of the ultra-low-frequency-detecting instruments around the world at hotspots for big quakes. It would cost around $3 million to buy 30 of these machines, he said, which is cheap compared to the cost of many other large studies.

Every year, there are on average 10 earthquakes of magnitude 7 or higher around the world. So within just a few years, he said, you could potentially have 10 new measurements of electromagnetic waves before big quakes-surely enough to determine whether the previous four findings were real.

Louis Bergeron | EurekAlert!
Further information:
http://www.stanford.edu

More articles from Earth Sciences:

nachricht In times of climate change: What a lake’s colour can tell about its condition
21.09.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?
21.09.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>