Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Northwards to the tropics? WUN expedition establishes international collaborative initiative for Arctic research

14.12.2007
Findings from a unique multidisciplinary international scientific expedition to the Arctic, involving scientists from leading universities, are providing new insights into Arctic climate change in the past.

The expedition, by the Worldwide Universities Network-sponsored Palaeo-Arctic Climates and Environments (pACE) group, is the first step in developing a major international programme of research for the future.

The focus of the expedition was Spitsbergen, the largest island in the Svalbard Archipelago, high within the Arctic Circle. The sediments there preserve a continuous record from 65 to approximately 33 million years ago, a time interval of crucial importance, when greenhouse conditions gave way to icehouse conditions.

The researchers were particularly interested in the sudden global climate that occurred about 55 million years ago – the Paleocene-Eocene Thermal Maximum (PETM) – which was probably the warmest episode of the last 65 million years.

Although Svalbard lay much at the same latitude 55 million years ago as it does today, some researchers believe that Arctic temperatures reached 25ºC during the PETM. Although this is still somewhat controversial, there is little doubt that latitudinal temperature gradients were very much reduced.

It is from these sediments that Southampton scientists have extracted forms of tropical plankton which are known to have migrated towards the polar region as PETM temperatures increased. The WUN pACE expedition also discovered leaf fossils typical of modern sub-tropical climates, providing further corroboration that the high Arctic had a much warmer climate at this time.

Eighteen scientists and nine graduate students from Southampton, Pennsylvania State, Oslo, Utrecht, Leeds and Sheffield universities took part in the expedition.

David Pilsbury, Chief Executive of WUN, explains: ‘A whole “alphabet soup” of organisations is seeking to set agendas for research into climate change, particularly in the Arctic. However, there are almost no sources of funding to support coherent international approaches to this issue. The WUN pACE program not only aims to foster a new program of research but to create a new cadre of young researchers with the skills necessary to transcend the discipline-bound approaches that can limit the impact of the knowledge we gain about the Earth.’

Dr Ian Harding, of the University of Southampton’s School of Ocean and Earth Science and a member of the expedition, says: ‘Understanding the palaeoenvironments of past greenhouse episodes is crucial to inform investigations of the potential effects of ongoing climate change.

‘Whilst in the Arctic, the group benefited from detailed explanations of the critical features of the geological successions by experts in a variety of different research fields. Being able to compare these observations and interpretations with the findings of other expedition participants in different geographical areas and different parts of the geological timescale was invaluable. This is something made possible only by the collaboration of an international group of experts.

‘WUN pACE has set an excellent precedent by involving both postgraduate and undergraduate students in the evolution of an international interdisciplinary research project, something that is rarely achieved, and an invaluable learning experience – even if initially a little daunting for some of them!’ he adds.

Senior pACE expedition members will be reconvening in Leeds in January 2008 to discuss the preliminary findings of their pilot study of the samples collected this summer, and to take forward the next phase of their research. This will include formulating a research schedule designed to better understand the behaviour of the different components of the Earth system – vegetation, oceans, climate, and atmosphere – in these high northern latitudes during this critical period of past global climate change.

Sarah Watts | alfa
Further information:
http://www.soton.ac.uk

More articles from Earth Sciences:

nachricht Predicting unpredictability: Information theory offers new way to read ice cores
07.12.2016 | Santa Fe Institute

nachricht Sea ice hit record lows in November
07.12.2016 | University of Colorado at Boulder

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>