Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

CO2 removal can lower costs of climate protection

12.04.2013
Directly removing CO2 from the air has the potential to alter the costs of climate change mitigation.

It could allow prolonging greenhouse-gas emissions from sectors like transport that are difficult, thus expensive, to turn away from using fossil fuels. And it may help to constrain the financial burden on future generations, a study now published by the Potsdam Institute for Climate Impact Research (PIK) shows. It focuses on the use of biomass for energy generation, combined with carbon capture and storage (CCS).

According to the analysis, carbon dioxide removal could be used under certain requirements to alleviate the most costly components of mitigation, but it would not replace the bulk of actual emissions reductions.

“Carbon dioxide removal from the atmosphere allows to separate emissions control from the time and location of the actual emissions. This flexibility can be important for climate protection,” says lead-author Elmar Kriegler. “You don’t have to prevent emissions in every factory or truck, but could for instance plant grasses that suck CO2 out of the air to grow – and later get processed in bioenergy plants where the CO2 gets stored underground.“

In economic terms, this flexibility allows to lower costs by compensating for emissions which would be most costly to eliminate. “This means that a phase-out of global emissions by the end of the century - that we would need to hold the 2 degree line adopted by the international community - does not necessarily require to eliminate each and every source of emissions,” says Kriegler. “Decisions whether and how to protect future generations from the risks of climate change have to be made today, but the burden of achieving these targets will increase over time. The costs for future generations can be substantially reduced if carbon dioxide removal technologies become available in the long run.”

Balancing the financial burden across generations

The study now published is the first to quantify this. If bioenergy plus CCS is available, aggregate mitigation costs over the 21st century might be halved. In the absence of such a carbon dioxide removal strategy, costs for future generations rise significantly, up to a quadrupling of mitigation costs in the period of 2070 to 2090. The calculation was carried out using a computer simulation of the economic system, energy markets, and climate, covering a range of scenarios.

Options for carbon dioxide removal from the atmosphere include afforestation and chemical approaches like direct air capture of CO2 from the atmosphere or reactions of CO2 with minerals to form carbonates. But the use of biomass for energy generation combined with carbon capture and storage is less costly than chemical options, as long as sufficient biomass feedstock is available, the scientists point out.

Serious concerns about large-scale biomass use combined with CCS

“Of course, there are serious concerns about the sustainability of large-scale biomass use for energy,” says co-author Ottmar Edenhofer, chief-economist of PIK. “We therefore considered the bioenergy with CCS option only as an example of the role that carbon dioxide removal could play for climate change mitigation.” The exploitation of bioenergy can conflict with land-use for food production or ecosystem protection. To account for sustainability concerns, the study restricts the bioenergy production to a medium level, that may be realized mostly on abandoned agricultural land.

Still, global population growth and changing dietary habits, associated with an increased demand for land, as well as improvements of agricultural productivity, associated with a decreased demand for land, are important uncertainties here. Furthermore, CCS technology is not yet available for industrial-scale use and, due to environmental concerns, is controversial in countries like Germany. Yet in this study it is assumed that it will become available in the near future.

“CO2 removal from the atmosphere could enable humankind to keep the window of opportunity open for low-stabilization targets despite of a likely delay in international cooperation, but only under certain requirements,” says Edenhofer. “The risks of scaling up bioenergy use need to be better understood, and safety concerns about CCS have to be thoroughly investigated. Still, carbon dioxide removal technologies are no science fiction and need to be further explored.” In no way should they be seen as a pretext to neglect emissions reductions now, notes Edenhofer. “By far the biggest share of climate change mitigation has to come from a large effort to reduce greenhouse-gas emissions globally.”

Article: Kriegler, E., Edenhofer, O., Reuster, L., Luderer, G., Klein, D. (2013): Is atmospheric carbon dioxide removal a game changer for climate change mitigation? Climatic Change (online) [10.1007/s10584-012-0681-4]

Weblink to the article:
http://link.springer.com/article/10.1007%2Fs10584-012-0681-4

For further information please contact:
PIK press office
Phone: +49 331 288 25 07
E-Mail: press@pik-potsdam.de
Follow us on twitter: @PIK_Climate

Jonas Viering | PIK Potsdam
Further information:
http://www.pik-potsdam.de

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

On the way to developing a new active ingredient against chronic infections

21.08.2017 | Life Sciences

Smart Computers

21.08.2017 | Information Technology

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>