Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

CO2 removal can lower costs of climate protection

12.04.2013
Directly removing CO2 from the air has the potential to alter the costs of climate change mitigation.

It could allow prolonging greenhouse-gas emissions from sectors like transport that are difficult, thus expensive, to turn away from using fossil fuels. And it may help to constrain the financial burden on future generations, a study now published by the Potsdam Institute for Climate Impact Research (PIK) shows. It focuses on the use of biomass for energy generation, combined with carbon capture and storage (CCS).

According to the analysis, carbon dioxide removal could be used under certain requirements to alleviate the most costly components of mitigation, but it would not replace the bulk of actual emissions reductions.

“Carbon dioxide removal from the atmosphere allows to separate emissions control from the time and location of the actual emissions. This flexibility can be important for climate protection,” says lead-author Elmar Kriegler. “You don’t have to prevent emissions in every factory or truck, but could for instance plant grasses that suck CO2 out of the air to grow – and later get processed in bioenergy plants where the CO2 gets stored underground.“

In economic terms, this flexibility allows to lower costs by compensating for emissions which would be most costly to eliminate. “This means that a phase-out of global emissions by the end of the century - that we would need to hold the 2 degree line adopted by the international community - does not necessarily require to eliminate each and every source of emissions,” says Kriegler. “Decisions whether and how to protect future generations from the risks of climate change have to be made today, but the burden of achieving these targets will increase over time. The costs for future generations can be substantially reduced if carbon dioxide removal technologies become available in the long run.”

Balancing the financial burden across generations

The study now published is the first to quantify this. If bioenergy plus CCS is available, aggregate mitigation costs over the 21st century might be halved. In the absence of such a carbon dioxide removal strategy, costs for future generations rise significantly, up to a quadrupling of mitigation costs in the period of 2070 to 2090. The calculation was carried out using a computer simulation of the economic system, energy markets, and climate, covering a range of scenarios.

Options for carbon dioxide removal from the atmosphere include afforestation and chemical approaches like direct air capture of CO2 from the atmosphere or reactions of CO2 with minerals to form carbonates. But the use of biomass for energy generation combined with carbon capture and storage is less costly than chemical options, as long as sufficient biomass feedstock is available, the scientists point out.

Serious concerns about large-scale biomass use combined with CCS

“Of course, there are serious concerns about the sustainability of large-scale biomass use for energy,” says co-author Ottmar Edenhofer, chief-economist of PIK. “We therefore considered the bioenergy with CCS option only as an example of the role that carbon dioxide removal could play for climate change mitigation.” The exploitation of bioenergy can conflict with land-use for food production or ecosystem protection. To account for sustainability concerns, the study restricts the bioenergy production to a medium level, that may be realized mostly on abandoned agricultural land.

Still, global population growth and changing dietary habits, associated with an increased demand for land, as well as improvements of agricultural productivity, associated with a decreased demand for land, are important uncertainties here. Furthermore, CCS technology is not yet available for industrial-scale use and, due to environmental concerns, is controversial in countries like Germany. Yet in this study it is assumed that it will become available in the near future.

“CO2 removal from the atmosphere could enable humankind to keep the window of opportunity open for low-stabilization targets despite of a likely delay in international cooperation, but only under certain requirements,” says Edenhofer. “The risks of scaling up bioenergy use need to be better understood, and safety concerns about CCS have to be thoroughly investigated. Still, carbon dioxide removal technologies are no science fiction and need to be further explored.” In no way should they be seen as a pretext to neglect emissions reductions now, notes Edenhofer. “By far the biggest share of climate change mitigation has to come from a large effort to reduce greenhouse-gas emissions globally.”

Article: Kriegler, E., Edenhofer, O., Reuster, L., Luderer, G., Klein, D. (2013): Is atmospheric carbon dioxide removal a game changer for climate change mitigation? Climatic Change (online) [10.1007/s10584-012-0681-4]

Weblink to the article:
http://link.springer.com/article/10.1007%2Fs10584-012-0681-4

For further information please contact:
PIK press office
Phone: +49 331 288 25 07
E-Mail: press@pik-potsdam.de
Follow us on twitter: @PIK_Climate

Jonas Viering | PIK Potsdam
Further information:
http://www.pik-potsdam.de

More articles from Earth Sciences:

nachricht NASA sees quick development of Hurricane Dora
27.06.2017 | NASA/Goddard Space Flight Center

nachricht Collapse of the European ice sheet caused chaos
27.06.2017 | CAGE - Center for Arctic Gas Hydrate, Climate and Environment

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>