Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Reforestation's cooling influence -- a result of farmer's past choices

Decisions by farmers to plant on productive land with little snow enhances the potential for reforestation to counteract global warming, concludes new research from Carnegie's Julia Pongratz and Ken Caldeira.

Previous research has led scientists and politicians to believe that regrowing forests on Northern lands that were cleared in order to grow crops would not decrease global warming. But these studies did not consider the importance of the choices made by farmers in the historical past. The work, with colleagues from the Max Planck Institute for Meteorology and the University of Hamburg, will be published August 2 by Geophysical Research Letters.

The Earth has been getting warmer over at least the past several decades, primarily as a result of the emissions of carbon dioxide from the burning of coal, oil, and gas, as well as the clearing of forests.

One strategy for slowing or reversing the increase in atmospheric concentrations of carbon dioxide is to regrow forests on abandoned agricultural land. But the proposal has been difficult to evaluate, because forests can either cool or warm the climate. The cooling effects come from carbon dioxide uptake. When forests grow, they absorb the greenhouse gas carbon dioxide from the atmosphere, and store the carbon in plant biomass and litter in branches, trunks, roots, and soils. This carbon dioxide absorption has a cooling influence on our planet's temperature.

The warming effect comes from the absorption of solar radiation. Forests are often darker than agricultural lands because they absorb more solar radiation. More importantly, forests in the spring often have snow-free and highly absorbing trees, at a time when fields and pastures are still snow-covered and reflective. As a result, forests generally absorb more sunlight than fields or pasture, and this increased absorption of sunlight has a warming influence, with this effect felt most strongly in the snowy areas of the world.

Previous studies that have attempted to understand the balance between cooling and warming from regrowing a forest considered unrealistic and highly idealized scenarios. The study by Pongratz and colleagues for the first time evaluated the climate cooling potential of reforestation taking historical patterns of land-use conversion into consideration.

Pongratz and colleagues found that farmers generally chose to use land that was more productive than average, and therefore richer in carbon. Furthermore, farmers generally chose to use land that was less snowy than average. While this result is not in itself surprising, its implications for the cooling potential of reforestation previously had been ignored. Regrowing forest on these productive lands can take up a lot of the greenhouse gas carbon dioxide, and therefore have a strong cooling influence. Because these lands are not very snowy, regrowing forests would not absorb very much additional sunlight. The net effect of the historical preference for productive snow-free land was to increase the climate cooling potential for reforestation on this land.

"Taking historical factors into account, we believe that we have shown that reforestation has more climate cooling potential than previously recognized," Pongratz said. "We are still not yet at the point where we can say whether any particular proposed reforestation project would have an overall cooling or warming influence. Nevertheless, broad trends are becoming apparent. The cooling effect of reforestation is enhanced because farmers in the past chose to use productive lands that are largely snow free."

The Department of Global Ecology was established in 2002 to help build the scientific foundations for a sustainable future. The department is located on the campus of Stanford University, but is an independent research organization funded by the Carnegie Institution. Its scientists conduct basic research on a wide range of large-scale environmental issues, including climate change, ocean acidification, biological invasions, and changes in biodiversity.

The Carnegie Institution for Science ( is a private, nonprofit organization headquartered in Washington, D.C., with six research departments throughout the U.S. Since its founding in 1902, the Carnegie Institution has been a pioneering force in basic scientific research. Carnegie scientists are leaders in plant biology, developmental biology, astronomy, materials science, global ecology, and Earth and planetary science.

Julia Pongratz | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht UCI and NASA document accelerated glacier melting in West Antarctica
26.10.2016 | University of California - Irvine

nachricht Ice shelf vibrations cause unusual waves in Antarctic atmosphere
25.10.2016 | American Geophysical Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>