Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Reefs of deep-sea corals are discovered for the first time in the Mediterranean, offshore of Israel, by the Nautilus cruise

04.10.2010
*"It's like finding a flourishing oasis in the middle of the desert," said Dr. Yizhaq Makovsky, who directed the University of Haifa control center for the Nautilus expedition in the southeastern Mediterranean.*

The exploration vessel Nautilus, with a team of experts of the University of Haifa's Leon H. Charney School of Marine Sciences, headed by Prof. Zvi Ben Avraham, discovered for the first time an area of reefs with deep-sea corals in the Mediterranean, offshore of Israel.


This area apparently stretches over a few kilometers, 700 meters under the surface and some 30-40 km off the coast of Tel Aviv. According to the researchers, this southeastern region of the Mediterranean has only sparse sea life and therefore the discovery is in fact parallel to discovering an oasis in the middle of an arid expanse. "We did not expect, know, or even imagine that we would come across these reefs and certainly not such large ones. It's like finding a flourishing oasis in the middle of the desert," said Dr. Yizhaq Makovsky, who directed the University of Haifa control center for the project.

After two and a half weeks at sea, during which time the ship's robots plunged as far as 1.7 km down into the depths of the Mediterranean, the Nautilus returned to land and the collaborative research team have begun to examine the many discoveries that they made. Probably the most significant – and most surprising – of these discoveries were the reefs of deep-sea coral, the first deep-sea coral reefs to be found offshore Israel. Their discovery has broad scientific importance. For example, they can help us in understanding the mechanisms of their survival in the environmental conditions of the deep sea, as well as unfold the history of these conditions with the effect of global changes.

"This cruise has provided a nutshell sampling of this maritime region, but our discovery only demonstrates the potential of the many surprises that await us in the depths of this area. An immediate implication of this discovery is that there is an urgent need to classify the area as a deep-sea reserve, as are other coral reef areas around the world," explained Dr. Makovsky.

In-depth research on the sea-bed samples are yet to get well under way, but additional discoveries that can already be reported from the Nautilus expedition, are two shipwrecks – probably modern boats that sunk over the past few decades; and fish and crabs that were photographed in their natural habitat for the first time, hundreds of meters beneath the Mediterranean surface.

One of the fascinating fish that were captured by the Nautilus's cameras was the Chimera Monstrosa, of the "ghost sharks" family that branched off from sharks some 400 million years ago.

The expedition also discovered and documented a 10-cm crab hiding in the recess of a rock, making it difficult for the research team to identify it. As with all the other discoveries, this crab was also documented thanks to the technological capabilities provided on the Nautilus.

For more details contact Rachel Feldman • Tel: +972-4-8288722

Communications and Media Relations
University of Haifa
press@univ.haifa.ac.il

Rachel Feldman | University of Haifa
Further information:
http://www.haifa.ac.il

Further reports about: Mediterranean ecosystems Nautilus Reefs coral reef global change

More articles from Earth Sciences:

nachricht Climate change weakens Walker circulation
20.10.2017 | MARUM - Zentrum für Marine Umweltwissenschaften an der Universität Bremen

nachricht Shallow soils promote savannas in South America
20.10.2017 | Senckenberg Forschungsinstitut und Naturmuseen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>