Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Reefs of deep-sea corals are discovered for the first time in the Mediterranean, offshore of Israel, by the Nautilus cruise

04.10.2010
*"It's like finding a flourishing oasis in the middle of the desert," said Dr. Yizhaq Makovsky, who directed the University of Haifa control center for the Nautilus expedition in the southeastern Mediterranean.*

The exploration vessel Nautilus, with a team of experts of the University of Haifa's Leon H. Charney School of Marine Sciences, headed by Prof. Zvi Ben Avraham, discovered for the first time an area of reefs with deep-sea corals in the Mediterranean, offshore of Israel.


This area apparently stretches over a few kilometers, 700 meters under the surface and some 30-40 km off the coast of Tel Aviv. According to the researchers, this southeastern region of the Mediterranean has only sparse sea life and therefore the discovery is in fact parallel to discovering an oasis in the middle of an arid expanse. "We did not expect, know, or even imagine that we would come across these reefs and certainly not such large ones. It's like finding a flourishing oasis in the middle of the desert," said Dr. Yizhaq Makovsky, who directed the University of Haifa control center for the project.

After two and a half weeks at sea, during which time the ship's robots plunged as far as 1.7 km down into the depths of the Mediterranean, the Nautilus returned to land and the collaborative research team have begun to examine the many discoveries that they made. Probably the most significant – and most surprising – of these discoveries were the reefs of deep-sea coral, the first deep-sea coral reefs to be found offshore Israel. Their discovery has broad scientific importance. For example, they can help us in understanding the mechanisms of their survival in the environmental conditions of the deep sea, as well as unfold the history of these conditions with the effect of global changes.

"This cruise has provided a nutshell sampling of this maritime region, but our discovery only demonstrates the potential of the many surprises that await us in the depths of this area. An immediate implication of this discovery is that there is an urgent need to classify the area as a deep-sea reserve, as are other coral reef areas around the world," explained Dr. Makovsky.

In-depth research on the sea-bed samples are yet to get well under way, but additional discoveries that can already be reported from the Nautilus expedition, are two shipwrecks – probably modern boats that sunk over the past few decades; and fish and crabs that were photographed in their natural habitat for the first time, hundreds of meters beneath the Mediterranean surface.

One of the fascinating fish that were captured by the Nautilus's cameras was the Chimera Monstrosa, of the "ghost sharks" family that branched off from sharks some 400 million years ago.

The expedition also discovered and documented a 10-cm crab hiding in the recess of a rock, making it difficult for the research team to identify it. As with all the other discoveries, this crab was also documented thanks to the technological capabilities provided on the Nautilus.

For more details contact Rachel Feldman • Tel: +972-4-8288722

Communications and Media Relations
University of Haifa
press@univ.haifa.ac.il

Rachel Feldman | University of Haifa
Further information:
http://www.haifa.ac.il

Further reports about: Mediterranean ecosystems Nautilus Reefs coral reef global change

More articles from Earth Sciences:

nachricht World’s oldest known oxygen oasis discovered
18.01.2018 | Eberhard Karls Universität Tübingen

nachricht A close-up look at an uncommon underwater eruption
11.01.2018 | Woods Hole Oceanographic Institution

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

Method uses DNA, nanoparticles and lithography to make optically active structures

19.01.2018 | Materials Sciences

More genes are active in high-performance maize

19.01.2018 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>