Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Record-low 2016 Antarctic sea ice due to 'perfect storm' of tropical, polar conditions

04.09.2017

While winter sea ice in the Arctic is declining so dramatically that ships can now navigate those waters without any icebreaker escort, the scene in the Southern Hemisphere is very different. Sea ice area around Antarctica has actually increased slightly in winter -- that is, until last year.

A dramatic drop in Antarctic sea ice almost a year ago, during the Southern Hemisphere spring, brought its maximum area down to its lowest level in 40 years of record keeping. Ocean temperatures were also unusually warm.


The percent of ocean surface covered with sea ice in 2016 was lower than usual (brown) over many parts of the Southern Ocean. The black line shows the edge of the region with at least 15 percent ice cover.

Credit: Malte Stuecker/University of Washington

This exceptional, sudden nosedive in Antarctica differs from the long-term decline in the Northern Hemisphere. A new University of Washington study shows that the lack of Antarctic sea ice in 2016 was in part due to a unique one-two punch from atmospheric conditions both in the tropical Pacific Ocean and around the South Pole.

The study was published Aug. 24 in Geophysical Research Letters.

"This combination of factors, all these things coming together in a single year, was basically the 'perfect storm,' for Antarctic sea ice," said corresponding author Malte Stuecker, a UW postdoctoral researcher in atmospheric sciences. "While we expect a slow decline in the future from global warming, we don't expect such a rapid decline in a single year to happen very often."

The area of sea ice around Antarctica at its peak in late 2016 was 2 million square kilometers (about 800,000 square miles) less than the average from the satellite record. Statistically, this is three standard deviations away from the average -- an event that would be expected to occur randomly just once every 300 years.

The record low was not predicted by climate scientists, so UW researchers looked at the bigger picture in ocean and atmospheric data to explain why it happened.

The previous year, 2015-16, had a very strong El Niño in the tropical Pacific Ocean. Nicknamed the "Godzilla El Nino," the event was similar to other monster El Niños in 1982-83 and 1997-98. Unlike the 1997-98 event, however, it was only followed by a relatively weak La Niña in 2016.

Far away from the tropics, the tropical El Niño pattern creates a series of high- and low-pressure zones that cause unusually warm ocean temperatures in Antarctica's eastern Ross, Amundsen and Bellingshausen seas. But in 2016, when no strong La Niña materialized, researchers found that these unusually warm surface pools lingered longer than usual and affected freeze-up of seawater the following season.

"I've spent many years working on tropical climate and El Niño, and it amazes me to see its far-reaching impacts," Stuecker said.

Meanwhile, observations show that the winds circling Antarctica were unusually weak in 2016, meaning they did not push sea ice away from the Antarctic coast to make room for the formation of new ice. This affected ice formation around much of the Southern Ocean.

"This was a really rare combination of events, something that we have never seen before in the observations," Stuecker said.

The researchers analyzed 13,000 years of climate model simulations to study how these unique conditions would affect the sea ice. Taken together, the El Niño pattern and Southern Ocean winds explain about two-thirds of the 2016 decline. The rest may be due to unusually big storms, which a previous paper suggested had broken up ice floes.

Scientists predict Antarctica's ocean will be one of the last places on Earth to experience global warming. Eventually the Southern Ocean's surface will begin to warm, however, and then sea ice there will begin its more long-term decline.

"Our best estimate of the Antarctic sea ice turnaround point is sometime in the next decade, but with high uncertainty because the climate signal is small compared to the large variations that can occur from one year to the next," said co-author Cecilia Bitz, a UW professor of atmospheric sciences.

Stuecker noted that this type of big, rare weather event is useful to help understand the physics behind sea ice formation, and to learn how best to explain the observations.

"For understanding the climate system we must combine the atmosphere, ocean and ice, but we must focus on more than a specific region," Stuecker said. "If we want to understand sea ice in Antarctica, we cannot just zoom in locally -- we really have to take a global perspective."

###

The other co-author is Kyle Armour, a UW assistant professor of atmospheric sciences and oceanography. The research was funded by the National Science Foundation and a National Oceanographic and Atmospheric Administration's Climate and Global Change Postdoctoral Fellowship Program, administered by the University Corporation for Atmospheric Research's Cooperative Programs for the Advancement of Earth System Science.

For more information, contact Stuecker at stuecker@atmos.washington.edu or Bitz at bitz@uw.edu and reach either author at 206-543-1339.

Media Contact

Hannah Hickey
hickeyh@uw.edu
206-543-2580

 @UW

http://www.washington.edu/news/ 

Hannah Hickey | EurekAlert!

More articles from Earth Sciences:

nachricht Filling the gap: High-latitude volcanic eruptions also have global impact
20.11.2017 | Institute of Atmospheric Physics, Chinese Academy of Sciences

nachricht Antarctic landscape insights keep ice loss forecasts on the radar
20.11.2017 | University of Edinburgh

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Previous evidence of water on mars now identified as grainflows

21.11.2017 | Physics and Astronomy

NASA's James Webb Space Telescope completes final cryogenic testing

21.11.2017 | Physics and Astronomy

New catalyst controls activation of a carbon-hydrogen bond

21.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>