Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Record Arctic ozone loss in 2011

06.04.2011
In March 2011 the satellite instruments SCIAMACHY and GOME-2 measured the lowest ozone values above the Arctic since the start of the European data record in 1995.

The origin of the strong ozone losses are very low temperatures in the stratosphere (about 20 km altitude) that release chlorine and bromine atoms from the chlorofluorocarbons (cfc) and related brominated substances emitted by humans and catalytically destroy ozone. The measurements by SCIAMACHY confirm high chlorine activation in March 2011.

Stratospheric temperatures in the Arctic are very variable from winter to winter. Last year temperatures and ozone above the Arctic were very high. The year-to-year variability is related to the global upper atmosphere circulation. In winters with a strong circulation more ozone is transported into high latitudes and polar stratospheric temperatures are getting higher resulting in less polar ozone depletion.

In the science community there is currently a debate on why just this Arctic winter was very cold. In a changing climate, it is expected that on average stratospheric temperatures cool which means more chemical ozone depletion will occur. On the other hand many studies show that the stratospheric circulation in the northern hemisphere may be enhanced in the future and consequently more ozone will be transported from the tropics into high latitudes and reduce ozone depletion. The measures by the Montreal protocol banning cfc’s and related species have succeeded in that the stratospheric halogen (chlorine and bromine) load is now slowly declining. Nevertheless strong chemical ozone depletion will still occur during unusually cold Arctic winters in coming decades.

The Institute of Environmental Physics of the University of Bremen (IUP) is routinely processing satellite data from GOME (since 1995), SCIAMACHY (since 2002), and GOME-2 (since 2007). IUP has initiated the GOME and SCIAMACHY projects. Spectral data from the satellite instruments are provided by ESA (GOME/ERS-2, SCIAMACHY/Envisat) and EUMETSAT (GOME-2/Metop-A). Calculations using a chemistry-transport model at IUP have shown that about half of the Arctic ozone has been chemically depleted during this winter.

Contact:
Dr. Mark Weber
Institut für Umweltphysik
Universität Bremen FB1
Tel 0421/218-62080
weber@uni-bremen.de
Dr. Andreas Richter
Institut für Umweltphysik
Universität Bremen FB1
Tel 0421/218-62103
richter@iup.physik.uni-bremen.de
Prof. John P. Burrows
Institut für Umweltphysik
Universität Bremen FB1
Tel 0421/218-62100
burrows@iup.physik.uni-bremen.de
http://www.esa.int/esaCP/SEMIF24SZLG_index_0.html

Eberhard Scholz | idw
Further information:
http://www.uni-bremen.de

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

A better way to measure the stiffness of cancer cells

01.03.2017 | Health and Medicine

Exploring the mysteries of supercooled water

01.03.2017 | Physics and Astronomy

Research team of the HAW Hamburg reanimated ancestral microbe from the depth of the earth

01.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>