Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Record Arctic ozone loss in 2011

In March 2011 the satellite instruments SCIAMACHY and GOME-2 measured the lowest ozone values above the Arctic since the start of the European data record in 1995.

The origin of the strong ozone losses are very low temperatures in the stratosphere (about 20 km altitude) that release chlorine and bromine atoms from the chlorofluorocarbons (cfc) and related brominated substances emitted by humans and catalytically destroy ozone. The measurements by SCIAMACHY confirm high chlorine activation in March 2011.

Stratospheric temperatures in the Arctic are very variable from winter to winter. Last year temperatures and ozone above the Arctic were very high. The year-to-year variability is related to the global upper atmosphere circulation. In winters with a strong circulation more ozone is transported into high latitudes and polar stratospheric temperatures are getting higher resulting in less polar ozone depletion.

In the science community there is currently a debate on why just this Arctic winter was very cold. In a changing climate, it is expected that on average stratospheric temperatures cool which means more chemical ozone depletion will occur. On the other hand many studies show that the stratospheric circulation in the northern hemisphere may be enhanced in the future and consequently more ozone will be transported from the tropics into high latitudes and reduce ozone depletion. The measures by the Montreal protocol banning cfc’s and related species have succeeded in that the stratospheric halogen (chlorine and bromine) load is now slowly declining. Nevertheless strong chemical ozone depletion will still occur during unusually cold Arctic winters in coming decades.

The Institute of Environmental Physics of the University of Bremen (IUP) is routinely processing satellite data from GOME (since 1995), SCIAMACHY (since 2002), and GOME-2 (since 2007). IUP has initiated the GOME and SCIAMACHY projects. Spectral data from the satellite instruments are provided by ESA (GOME/ERS-2, SCIAMACHY/Envisat) and EUMETSAT (GOME-2/Metop-A). Calculations using a chemistry-transport model at IUP have shown that about half of the Arctic ozone has been chemically depleted during this winter.

Dr. Mark Weber
Institut für Umweltphysik
Universität Bremen FB1
Tel 0421/218-62080
Dr. Andreas Richter
Institut für Umweltphysik
Universität Bremen FB1
Tel 0421/218-62103
Prof. John P. Burrows
Institut für Umweltphysik
Universität Bremen FB1
Tel 0421/218-62100

Eberhard Scholz | idw
Further information:

More articles from Earth Sciences:

nachricht Enormous dome in central Andes driven by huge magma body beneath it
25.10.2016 | University of California - Santa Cruz

nachricht Deep down fracking wells, microbial communities thrive
25.10.2016 | DOE/Pacific Northwest National Laboratory

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Enormous dome in central Andes driven by huge magma body beneath it

25.10.2016 | Earth Sciences

First time-lapse footage of cell activity during limb regeneration

25.10.2016 | Life Sciences

Deep down fracking wells, microbial communities thrive

25.10.2016 | Earth Sciences

More VideoLinks >>>