Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Real time forecast of Hurricane Sandy had track and intensity accuracy

25.02.2014
A real-time hurricane analysis and prediction system that effectively incorporates airborne Doppler radar information may accurately track the path, intensity and wind force in a hurricane, according to Penn State meteorologists. This system can also identify the sources of forecast uncertainty.

"For this particular study aircraft-based Doppler radar information was ingested into the system," said Fuqing Zhang, professor of meteorology, Penn State. "Our predictions were comparable to or better than those made by operational global models."

Zhang and Erin B. Munsell, graduate student in meteorology, used The Pennsylvania State University real-time convection-permitting hurricane analysis and forecasting system (WRF-EnKF) to analyze Hurricane Sandy. While Sandy made landfall on the New Jersey coast on the evening of Oct. 29, 2012, the analysis and forecast system began tracking on Oct. 21 and the Doppler radar data analyzed covers Oct. 26 through 28.

The researchers compared The WRF-EnKF predictions to the National Oceanic and Atmospheric Administration's Global Forecast System (GFS) and the European Centre for Medium-Range Weather Forecasts (ECMWF). Besides the ability to effectively assimilate real-time Doppler radar information, the WRF-EnKF model also includes high-resolution cloud-permitting grids, which allow for the existence of individual clouds in the model.

"Our model predicted storm paths with 100 km -- 50 mile -- accuracy four to five days ahead of landfall for Hurricane Sandy," said Zhang. "We also had accurate predictions of Sandy's intensity."

The WRF-EnKF model also runs 60 storm predictions simultaneously as an ensemble, each with slightly differing initial conditions. The program runs on NOAA's dedicated computer, and the analysis was done on the Texas Advanced Computing Center computer because of the enormity of data collected.

To analyze the Hurricane Sandy forecast data, the researchers divided the 60 runs into groups -- good, fair and poor. This approach was able to isolate uncertainties in the model initial conditions, which are most prevalent on Oct. 26, when 10 of the predictions suggested that Sandy would not make landfall at all. By looking at this portion of the model, Zhang suggests that the errors occur because of differences in the initial steering level winds in the tropics that Sandy was embedded in, instead of a mid-latitude trough -- an area of relatively low atmospheric pressure -- ahead of Sandy's path.

"Though the mid-latitude system does not strongly influence the final position of Sandy, differences in the timing and location of its interactions with Sandy lead to considerable differences in rainfall forecasts, especially with respect to heavy precipitation over land," the researchers report in a recent issue of the Journal of Advances in Modeling Earth Systems.

By two days before landfall, the WRF-EnKF model was accurately predicting the hurricane's path with landfall in southern New Jersey, while the GFS model predicted a more northern landfall in New York and Connecticut, and the ECMWF model forecast landfall in northern New Jersey.

Hurricane Sandy is a good storm to analyze because its path was unusual among Atlantic tropical storms, which do not usually turn northwest into the mid-Atlantic or New England. While all three models did a fairly good job at predicting aspects of this hurricane, the WRF-EnKF model was very promising in predicting path, intensity and rainfall.

NOAA is currently evaluating the use of the WRF-EnKF system in storm prediction, and other researchers are using it to predict storm surge and risk analysis.

The National Science Foundation, National Oceanic and Atmospheric Administration, NASA and the Office of Naval Research supported this work. Yonghui Weng, a research associate in Zhang's group, performed the real-time WRF-EnKF runs.

A'ndrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu

More articles from Earth Sciences:

nachricht Predicting unpredictability: Information theory offers new way to read ice cores
07.12.2016 | Santa Fe Institute

nachricht Sea ice hit record lows in November
07.12.2016 | University of Colorado at Boulder

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>