Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Raindrop Research Dials in Satellite Forecasting Accuracy

04.02.2014
Dialing in the accuracy of satellite weather forecasting is the goal behind basic research into raindrop size and shape being done at The University of Alabama in Huntsville by a UAH doctoral student who is also an atmospheric scientist in the NASA Pathways Intern Employment Program.

Patrick Gatlin says his work measuring the height and width of raindrops using ground instruments provides an accuracy baseline that is then scaled up to ground radar and then to satellite measurements.

He is co-author of a paper on the topic (Tokay, Ali, Walter A. Petersen, Patrick Gatlin, Matthew Wingo, 2013: Comparison of Raindrop Size Distribution Measurements by Collocated Disdrometers. J. Atmos. Oceanic Technol., 30, 1672–1690; http://dx.doi.org/10.1175/JTECH-D-12-00163.1).

“That’s really the whole purpose of measuring raindrops, is for remote sensing purposes,” Gatlin says. Scaling up accuracy from a small sensor on the ground to large sections of the Earth being observed from space requires very accurately calibrated instruments. “Our ability to correctly depict rainfall using a sensor in space is closely tied to knowing how precipitation varies, right down to the individual raindrop and snowflake size.”

Perfecting ground-level instrument observations, enlarging those to encompass ground-based radar and then going even larger to develop accurate satellite measuring instruments is the best way to reduce error as the area under observation increases. “Before we invest in all this satellite instrumentation,” Gatlin says, “let’s make sure we’ve got it right.”

A coming big step in scaling up precipitation forecasting is NASA’s planned launch of its Global Precipitation Measurement (GPM) satellite toward the end of February. UAH is a mission contractor, headed at the university by Dr. Larry Carey, an associate professor of atmospheric science, and involving UAH Earth System Science Center research scientist Matt Wingo, who is working with NASA at their flight facility in Wallops Island, Va.

“UAH designed the platform for some of the ground-based instruments that will validate the information from the satellite,” says Gatlin.

Carrying an advanced radar/radiometer system to measure precipitation from space, the GPM is the core of what will be a global network of measuring satellites that will provide next-generation global observations of rain and snow. It will serve as a reference standard to unify precipitation measurements from a constellation of research and operational satellites.

Through improved measurements of precipitation globally, the GPM mission will help to advance understanding of Earth's water and energy cycle, improve forecasting of extreme events that cause natural hazards and disasters, and extend current capabilities in using accurate and timely precipitation information.

In his own research, Gatlin has ranged from Iowa and Oklahoma to Canada, Finland, Italy and France. Rather than raindrops, the Canadian research was designed to collect snowflake images in order to improve the accuracy of measuring devices for snowfall.

In each locale, an integrated network of ground-level measuring devices have been deployed, like the Parsivel2, a disdrometer that measures the particle size and velocity of raindrops falling through a laser. Also in use are two-dimensional video disdrometers, which use two video angles to create 2-D pictures that enable determination of raindrop shapes. A video disdrometer on loan from frequent research collaborator Colorado State University is located on the UAH campus behind Cramer Hall.

During a field study, the instruments on the ground take measurements while a plane flies through the clouds to collect actual raindrop information and another flies high above the clouds with remote sensing equipment to mimic satellite radar detection. Results from all the measurement methods are compared.

Enhanced satellite-based precipitation measurements will improve both rainfall and snowfall predictions on a global scale, Gatlin says. “We’ll be measuring rain and snow in some areas where we’ve never measured it before.” The ability to better measure raindrop size also can have impact on severe weather forecasting, as small raindrops lead to higher evaporation rates that have been correlated with larger and more forceful microbursts by UAH’s Dr. Kevin Knupp and others.

Gatlin is about to finish up a global study focusing just on very large raindrops 5 millimeters in size and larger. These drops are difficult to capture in the small measuring area afforded by measuring instruments, and so their observation is rare. Gatlin says out of 224 million drops he has researched, only 8,000 have been 5 mm or larger.

“Even though large raindrops can have the greatest impact on radar measurements, we don’t have a good idea of their concentration,” he says. “What I’ve been doing is bringing together all the raindrop data bases that have collected various types of rainfall data using the same techniques.”

Interestingly, while Sumatra holds the honor of having the greatest number of large drops overall, the largest drop collected in his study fell through a measuring device at the UAH campus. It measured 9.1 mm and was formed in a hailstorm when a falling piece of hail melted before landing.

Patrick Gatlin | Newswise
Further information:
http://www.uah.edu

More articles from Earth Sciences:

nachricht Researchers find higher than expected carbon emissions from inland waterways
25.05.2016 | Washington State University

nachricht Rutgers scientists help create world's largest coral gene database
24.05.2016 | Rutgers University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

Im Focus: Transparent - Flexible - Printable: Key technologies for tomorrow’s displays

The trend-forward world of display technology relies on innovative materials and novel approaches to steadily advance the visual experience, for example through higher pixel densities, better contrast, larger formats or user-friendler design. Fraunhofer ISC’s newly developed materials for optics and electronics now broaden the application potential of next generation displays. Learn about lower cost-effective wet-chemical printing procedures and the new materials at the Fraunhofer ISC booth # 1021 in North Hall D during the SID International Symposium on Information Display held from 22 to 27 May 2016 at San Francisco’s Moscone Center.

Economical processing

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

LZH shows the potential of the laser for industrial manufacturing at the LASYS 2016

25.05.2016 | Trade Fair News

Great apes communicate cooperatively

25.05.2016 | Life Sciences

Thermo-Optical Measuring method (TOM) could save several million tons of CO2 in coal-fired plants

25.05.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>