Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

"Rosetta Stone" of supervolcanoes discovered in Italian Alps

23.09.2009
Scientists have found the "Rosetta Stone" of supervolcanoes, those giant pockmarks in the Earth's surface produced by rare and massive explosive eruptions that rank among nature's most violent events. The eruptions produce devastation on a regional scale — and possibly trigger climatic and environmental effects at a global scale.

A fossil supervolcano has been discovered in the Italian Alps' Sesia Valley by a team led by James E. Quick, a geology professor at Southern Methodist University. The discovery will advance scientific understanding of active supervolcanoes, like Yellowstone, which is the second-largest supervolcano in the world and which last erupted 630,000 years ago.

A rare uplift of the Earth's crust in the Sesia Valley reveals for the first time the actual "plumbing" of a supervolcano from the surface to the source of the magma deep within the Earth, according to a new research article reporting the discovery. The uplift reveals to an unprecedented depth of 25 kilometers the tracks and trails of the magma as it moved through the Earth's crust.

Supervolcanoes, historically called calderas, are enormous craters tens of kilometers in diameter. Their eruptions are sparked by the explosive release of gas from molten rock or "magma" as it pushes its way to the Earth's surface.

Calderas erupt hundreds to thousands of cubic kilometers of volcanic ash. Explosive events occur every few hundred thousand years. Supervolcanoes have spread lava and ash vast distances and scientists believe they may have set off catastrophic global cooling events at different periods in the Earth's past.

Sesia Valley's caldera erupted during the "Permian" geologic time period, say the discovery scientists. It is more than 13 kilometers in diameter.

"What's new is to see the magmatic plumbing system all the way through the Earth's crust," says Quick, who previously served as program coordinator for the Volcano Hazards Program of the U.S. Geological Survey. "Now we want to start to use this discovery. We want to understand the fundamental processes that influence eruptions: Where are magmas stored prior to these giant eruptions? From what depth do the eruptions emanate?"

Sesia Valley's unprecedented exposure of magmatic plumbing provides a model for interpreting geophysical profiles and magmatic processes beneath active calderas. The exposure also serves as direct confirmation of the cause-and-effect link between molten rock moving through the Earth's crust and explosive volcanism.

"It might lead to a better interpretation of monitoring data and improved prediction of eruptions," says Quick, lead author of the research article reporting the discovery. The article, "Magmatic plumbing of a large Permian caldera exposed to a depth of 25 km.," appears in the July issue of the peer-reviewed journal "Geology."

Calderas, which typically exhibit high levels of seismic and hydrothermal activity, often swell, suggesting movement of fluids beneath the surface.

"We want to better understand the tell-tale signs that a caldera is advancing to eruption so that we can improve warnings and avoid false alerts," Quick says.

To date, scientists have been able to study exposed caldera "plumbing" from the surface of the Earth to a depth of only 5 kilometers. Because of that, scientific understanding has been limited to geophysical data and analysis of erupted volcanic rocks. Quick likens the relevance of Sesia Valley to seeing bones and muscle inside the human body for the first time after previously envisioning human anatomy on the basis of a sonogram only.

"We think of the Sesia Valley find as the 'Rosetta Stone' for supervolcanoes because the depth to which rocks are exposed will help us to link the geologic and geophysical data," Quick says. "This is a very rare spot. The base of the Earth's crust is turned up on edge. It was created when Africa and Europe began colliding about 30 million years ago and the crust of Italy was turned on end."

Bristish researchers introduced the term "supervolcano" in the last 10 years. Scientists have documented fewer than two dozen caldera eruptions in the last 1 million years.

Besides Yellowstone, other monumental explosions have included Lake Toba on Indonesia's Sumatra island 74,000 years ago, which is believed to be the largest volcanic eruption on Earth in the past 25 million years.

Described as a massive climate-changing event, the Lake Toba eruption is thought to have killed an estimated 60% of humans alive at the time.

Another caldera, and one that remains active, Long Valley in California erupted about 760,000 years ago and spread volcanic ash for 600 cubic kilometers. The ash blanketed the southwestern United States, extending from California to as far west as Nebraska.

"There will be another supervolcano explosion," Quick says. "We don't know where. Sesia Valley could help us to predict the next event."

Quick is a professor in the SMU Roy M. Huffington Department of Earth Sciences as well as SMU associate vice president for research and dean of graduate studies. Co-authors of the report are Silvano Sinigoi, Gabriella Peressini and Gabriella Demarchi, all of the Universita di Trieste; John L. Wooden, Stanford University; and Andrea Sbisa, Universita di Trieste. — Margaret Allen

Kim Cobb | EurekAlert!
Further information:
http://www.smu.edu

More articles from Earth Sciences:

nachricht Mountain glaciers shrinking across the West
23.10.2017 | University of Washington

nachricht Climate change weakens Walker circulation
20.10.2017 | MARUM - Zentrum für Marine Umweltwissenschaften an der Universität Bremen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>