Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Queen's helps produce archaeological 'time machine'

11.02.2010
Researchers at Queen's University have helped produce a new archaeological tool which could answer key questions in human evolution.

The new calibration curve, which extends back 50,000 years is a major landmark in radiocarbon dating-- the method used by archaeologists and geoscientists to establish the age of carbon-based materials.

It could help research issues including the effect of climate change on human adaption and migrations.

The project was led by Queen's University Belfast through a National Environment Research Centre (NERC) funded research grant to Dr Paula Reimer and Professor Gerry McCormac from the Centre for Climate, the Environment and Chronology (14CHRONO) at Queen's and statisticians at the University of Sheffield.

Ron Reimer and Professor Emeritus Mike Baillie from Queen's School of Geography, Archaeology and Palaeoecology also contributed to the work.

The curve called INTCAL09, has just been published in the journal Radiocarbon. It not only extends radiocarbon calibration but also considerably improves earlier parts of the curve.

Dr Reimer said: "The new radiocarbon calibration curve will be used worldwide by archaeologists and earth scientists to convert radiocarbon ages into a meaningful time scale comparable to historical dates or other estimates of calendar age.

"It is significant because this agreed calibration curve now extends over the entire normal range of radiocarbon dating, up to 50,000 years before today. Comparisons of the new curve to ice-core or other climate archives will provide information about changes in solar activity and ocean circulation."

It has taken nearly 30 years for researchers to produce a calibration curve this far back in time.

Since the early 1980s, an international working group called INTCAL has been working on the project.

The principle of radiocarbon dating is that plants and animals absorb trace amounts of radioactive carbon-14 from carbon dioxide in the atmosphere while they are alive but stop doing so when they die. The carbon-14 decays from archaeological and geological samples so the amount left in the sample gives an indication of how old the sample is.

As the amount of carbon -14 in the atmosphere is not constant, but varies with the strength of the earth's magnetic field, solar activity and ocean radiocarbon ages must be corrected with a calibration curve.

Most experts consider the technical limit of radiocarbon dating to be about 50,000 years, after which there is too little carbon-14 left to measure accurately with present day technology.

Further information on the work of Queen's Chrono Centre can be found online at http://chrono.qub.ac.uk/

Media inquiries to Lisa McElroy, Press and PR Unit. Tel: 44-0-28-9097-5384 or email lisa.mcelroy@qub.ac.uk.

Lisa McElroy | EurekAlert!
Further information:
http://www.qub.ac.uk

More articles from Earth Sciences:

nachricht Climate satellite: Tracking methane with robust laser technology
22.06.2017 | Fraunhofer-Gesellschaft

nachricht How reliable are shells as climate archives?
21.06.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

New 3-D model predicts best planting practices for farmers

26.06.2017 | Agricultural and Forestry Science

New research reveals impact of seismic surveys on zooplankton

26.06.2017 | Life Sciences

Correct connections are crucial

26.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>