Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quake Prediction Model Developed

07.12.2009
The third in a series of papers in the journal Nature completes the case for a new method of predicting earthquakes.

The forecasting model developed by Danijel Schorlemmer, of the USC College of Letters, Arts and Sciences, aims to predict the rough size and location of future quakes. Testing of the model is underway.

While the timing of quakes remains unpredictable, progress on two out of three key questions is significant in the hard discipline of earthquake forecasting.

Schorlemmer is the senior author of the most recent paper, published online Dec. 3 in Nature. He was the first author of two related papers in Nature, both published in 2005.

“One of the key aspects in forecasting of earthquakes is stresses. The findings in the three papers help identify locations that are highly stressed from readily available earthquake catalogs,” Schorlemmer said.

Seismologists believe that the buildup of stress deep in the earth causes earthquakes. Monitoring such stress has proven impossible to date.

Instead, Schorlemmer and his collaborators found a way to estimate the stress indirectly.

They started by observing that different types of earthquakes differ on average in the stresses needed for rupture. Quakes from thrust faults, which push a large block of earth upward, require the largest stress. Quakes on normal faults, in which two plates pull apart and a block of earth drops, require the least stress.

Quakes on strike-slip faults such as the San Andreas, where two plates slide past each other, fall somewhere in the middle.

The researchers then noticed that two laws of statistical seismology – those governing the relative frequency of big and small quakes, and the decay in time of aftershocks – differ slightly for each type of earthquake.

Regions with active thrust faults tend to have a greater proportion of large quakes than regions with normal faults, with strike-slip faults falling in the middle.

The number of aftershocks from quakes on thrust faults tends to start decaying sooner than the number of aftershocks near normal faults, with strike-slip faults again somewhere in between.

Schorlemmer realized that these differences could be applied predictively: One could study the relative frequency and aftershock patterns of small to medium sized earthquakes – which occur regularly in every seismically active region – and infer the level of stress in different parts of that region.

That realization led to a new earthquake prediction model.

The model cannot predict the timing of a quake, but it may be the first to provide an indirect measure of the stress inside the earth, and therefore a reasonable estimate of the size and location of future quakes.

“We are observing the little aftershocks all over California, deriving the state of stress and trying to predict the future mainshocks,” Schorlemmer said.

“It’s not perfect. It’s the only proxy (for stress) we could come up with so far.”

The model is now being tested by the Collaboratory for the Study of Earthquake Predictability (CSEP), an international project started by Thomas Jordan, director of the Southern California Earthquake Center based at USC.

“This study provides new insights about how forces within Earth's crust control seismic processes, and we should be able to use this information to improve our ability to forecast earthquakes,” Jordan noted.

CSEP is testing several forecast models along with Schorlemmer’s. Because the test needs to run at least five years, results are not yet available.

The Schorlemmer group’s findings have theoretical as well as practical impact. Seismologists had known for decades about the two laws of statistical seismology governing relative frequency and aftershock patterns, but could not agree on why they worked.

“What is causing them, and why are they what they are? We’re now able to relate physical properties to parameters of these two fundamental laws,” Schorlemmer said.

Since the first step in predicting the behavior of a system is to understand it, the Schorlemmer group’s research should advance the field of earthquake forecasting significantly.

Schorlemmer’s co-authors were first author Clement Narteau of the Institut de Physique du Globe (IPG) in Paris; Svetlana Byrdina of IPG and the Universite de Savoie in Le Bourget-du-Lac, France; and Peter Shebalin of IPG and the International Institute of Earthquake Prediction Theory and Mathematical Geophysics in Moscow.

Schorlemmer’s co-authors on the 2005 Nature paper were Stefan Wiemer of ETH Zurich and Max Wyss of the World Agency of Planetary Monitoring and Earthquake Risk Reduction in Geneva.

Carl Marziali | Newswise Science News
Further information:
http://www.usc.edu

More articles from Earth Sciences:

nachricht Climate satellite: Tracking methane with robust laser technology
22.06.2017 | Fraunhofer-Gesellschaft

nachricht How reliable are shells as climate archives?
21.06.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>