Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New proxy reveals how humans have disrupted the nitrogen cycle

08.06.2009
More and more, scientists are getting a better grip on the nitrogen cycle. They are learning about sources of nitrogen and how this element changes as it loops from the nonliving, such as the atmosphere, soil or water, to the living, whether plants or animals. Scientists have determined that humans are disrupting the nitrogen cycle by altering the amount of nitrogen that is stored in the biosphere.

The chief culprit is fossil fuel combustion, which releases nitric oxides into the air that combine with other elements to form smog and acid rain. But it has been difficult to know precisely the extent to which such emissions have altered the nitrogen balance.

Researchers from Brown University and the University of Washington have found a new way to make the link. The scientists show that comparing nitrogen isotopes in their deposited form — nitrates — can reveal the sources of atmospheric nitric oxide. In a paper published this week in Science, the group traces the source of nitrates to nitric oxides released through fossil fuel burning that parallels the beginning of the Industrial Revolution. The group also reveals that the greatest change in nitrogen isotope ratios occurred between 1950 and 1980, following a rapid increase in fossil fuel emissions.

"What we find is there has been this significant change to the nitrogen cycle over the past 300 years," said Meredith Hastings, assistant professor of geological sciences at Brown and the paper's lead author. "So we've added this new source — and not just a little bit of it, but a lot of it."

To make the link, Hastings, with Julia Jarvis and Eric Steig from the Department of Earth and Space Sciences at the University of Washington, examined at high resolution for the first time two isotopes of nitrogen found in nitrates in a Greenland ice core. The core, 100 meters long and taken at the peak of the Greenland ice cap in June 2006, contains a record of nitrates from about 1718 to 2006, according to the group.

Tests showed the ratio of the nitrogen-15 isotope to the more common nitrogen-14 isotope had changed from pre-industrial times to the present.

"The only way I can explain the trend over time," Hastings said, "are the nitric oxide sources, because we've introduced this whole new source — and that's fossil fuels burning."

Steig said the work also addresses a long-standing question about changes in lake chemistry in remote regions. "Sediment cores in Arctic lakes show that there have been significant 20th-century declines in the nitrogen isotopic composition of organic nitrogen," Steig said. "It's been unclear whether these are due to changes in the lake biogeochemistry or to the direct effect of changes in the isotopic composition of the incoming nitrate from the atmosphere. Our study makes it clear that it is primarily the latter."

The group now wants to determine the ratio of nitrogen-14 and nitrogen-15 isotopes for individual sources of nitric oxides, including lightning, biomass burning, bacterial "fixing" of nitrogen, and fossil fuel burning. The goal would be to pinpoint sources of nitrogen overloading, whether natural or human-caused.

"For example in Narragansett Bay, we could distinguish between nitrogen caused by sewage overflows or vehicular pollution, power plants, fertilizers, or other sources and know how to attack the problem," Hastings said.

Even more, the researchers want to quantify changes in the natural sources of nitric oxides and see whether climate change is influencing those processes.

The task is complicated, however, because nitrogen, when cycling through the atmosphere or deposited on land or in water, is subject to influences that can alter the isotopic ratios, thus masking the source. So, the scientists will need to tease out the extent of those alterations to trace the isotopic signatures of nitric oxide sources accurately.

The research was funded by the National Science Foundation's Office of Polar Programs and the Joint Institute for the Study of the Atmosphere and the Ocean (JISAO).

Richard Lewis | EurekAlert!
Further information:
http://www.Brown.edu

More articles from Earth Sciences:

nachricht NASA examines Peru's deadly rainfall
24.03.2017 | NASA/Goddard Space Flight Center

nachricht Steep rise of the Bernese Alps
24.03.2017 | Universität Bern

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>