Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Programmed Multicopter Flies Through the Arctic Autonomously

17.08.2015

During the latest Polarstern expedition, researchers conducted an autonomous multicopter flight in the Fram Strait

How do you successfully pilot a remote-controlled helicopter in the remote expanses of the Arctic Ocean when the compass can’t provide reliable positioning data?


Multicopter in the Arctic

Photo: Alfred-Wegener-Institut / Tobias Mikschl

Engineers on board the Alfred Wegener Institute’s research icebreaker Polarstern specially programmed a multicopter, allowing it to navigate despite the deviations produced by the Earth’s magnetic field near the North Pole. The researchers recently celebrated the copter’s first successful autonomous flight and landing on an ice floe.

According to Sascha Lehmenhecker, an engineer at the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI), “At high latitudes, autonomous navigation is a major challenge.”

“Navigation systems normally use magnetic sensors. But near the poles, the lines of the Earth’s magnetic field are nearly perpendicular to the ground, making precise navigation extremely difficult. That’s why commercial multicopter control systems aren’t well suited for use in polar regions.”

Together with the PhD candidates Michael Strohmeier and Tobias Mikschl from the University of Würzburg, Lehmenhecker refined the control systems for multicopters –these roughly half-metre-long devices, powered by multiple propellers, are intended to land on ice floes and fly back to their “mother ship” autonomously several hours later.

The particular task: both the ice floe and the ship are in motion. The ship has to continue on its scheduled course to conduct other research, while wind, waves and currents cause the ice floe to drift. And it’s precisely the direction and speed with which it drifts that the multicopter needs to determine.

The development team pursued two approaches to allow the multicopter’s control system to compensate for the distortions in the positioning. “In the first approach, the multicopter remains in constant contact with a receiving station, which uses the copter’s GPS data to calculate the discrepancies. In other words, the multicopter transmits its GPS position to the station, which in turn transmits back the corresponding, adjusted coordinates,” explains Lehmenhecker.

“The second option: we use two onboard GPS receivers to calculate the actual change in the copter’s position. Though this is the better method, it’s also much more complex, and we’re still just starting to develop it,” clarifies the AWI engineer.

The system passed its first test, conducted on an ice floe in the arctic Fram Strait (79° N parallel), with flying colours: the team and copter were left on a floe. Now clear of the magnetic interference produced by electric motors on board the Polarstern, the team manually flew the copter roughly three kilometres out, to the edge of visual range. They then activated the autonomous return programme – and the multicopter flew to the pre-set coordinates and safely landed on its own.

Sascha Lehmenhecker and his colleagues in the AWI Deep-Sea Research Group came up with the idea for this development in connection with the use of sensitive devices under the ice. One example is the Group’s torpedo-shaped autonomous underwater vehicle (AUV) “Paul”, which explores the ocean beneath the sea ice. “In order to optimally plan its dives, it’s important to have precise information on the movement of the sea ice,” explains Lehmenhecker.

Conventionally, this was achieved by deploying “ice trackers” on floes with the help of a Zodiac boat or a helicopter – a difficult and time-consuming method. Further, the researchers generally try to avoid leaving the safety of the Polarstern wherever possible; after all, water temperatures hovering around the freezing point, jagged ice floes drifting to and fro, not to mention polar bears, represent additional risks and should be kept to a minimum.

The Deep-Sea Research Group first used a multicopter developed by the AWI during a 2012 expedition. Flying by remote control, it landed on the ice and used GPS to determine its position, then transmitted the data back to the research ship, which was monitoring Paul’s dive. In this way, the multicopter took on an important role, offering navigational support for the AUV.

Once each dive was complete, the ship had to return fairly close to the multicopter’s position: the pilot had to remotely guide the copter back to the ship, which was only possible in visual range. Extremely pleased by the successful test, which was conducted under the auspices of the Helmholtz Alliance “Robotic Exploration of Extreme Environments” (ROBEX), Sascha Lehmenhecker recaps what it means for researchers: “This new development will expand the service radius of our copters from visual range to as much as ten kilometres.”

Notes for Editors:

At our press office, Dr Folke Mehrtens (tel.: +49 471 4831-2007; e-mail: medien(at)awi.de) will be pleased to help you with any questions.

Please find printable images on: http://www.awi.de/en/about-us/service/press.html

The Alfred Wegener Institute conducts research in the Arctic, Antarctic and in the high and mid-latitude oceans. The Institute coordinates German polar research and provides important infrastructure such as the research icebreaker Polarstern and research stations in the Arctic and Antarctic to the national and international scientific world. The Alfred Wegener Institute is one of the 18 research centres of the Helmholtz Association, the largest scientific organisation in Germany.

Weitere Informationen:

http://www.awi.de/en/about-us/service/press/press-release/programmierter-multiko... Press Release on AWI homepage
http://www.robex-allianz.de/en/ ROBEX homepage

Ralf Röchert | idw - Informationsdienst Wissenschaft

More articles from Earth Sciences:

nachricht Heidelberg Researchers Study Unique Underwater Stalactites
24.11.2017 | Universität Heidelberg

nachricht Lightning, with a chance of antimatter
24.11.2017 | Kyoto University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

IceCube experiment finds Earth can block high-energy particles from nuclear reactions

24.11.2017 | Physics and Astronomy

A 'half-hearted' solution to one-sided heart failure

24.11.2017 | Health and Medicine

Heidelberg Researchers Study Unique Underwater Stalactites

24.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>