Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Programmed Multicopter Flies Through the Arctic Autonomously

17.08.2015

During the latest Polarstern expedition, researchers conducted an autonomous multicopter flight in the Fram Strait

How do you successfully pilot a remote-controlled helicopter in the remote expanses of the Arctic Ocean when the compass can’t provide reliable positioning data?


Multicopter in the Arctic

Photo: Alfred-Wegener-Institut / Tobias Mikschl

Engineers on board the Alfred Wegener Institute’s research icebreaker Polarstern specially programmed a multicopter, allowing it to navigate despite the deviations produced by the Earth’s magnetic field near the North Pole. The researchers recently celebrated the copter’s first successful autonomous flight and landing on an ice floe.

According to Sascha Lehmenhecker, an engineer at the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI), “At high latitudes, autonomous navigation is a major challenge.”

“Navigation systems normally use magnetic sensors. But near the poles, the lines of the Earth’s magnetic field are nearly perpendicular to the ground, making precise navigation extremely difficult. That’s why commercial multicopter control systems aren’t well suited for use in polar regions.”

Together with the PhD candidates Michael Strohmeier and Tobias Mikschl from the University of Würzburg, Lehmenhecker refined the control systems for multicopters –these roughly half-metre-long devices, powered by multiple propellers, are intended to land on ice floes and fly back to their “mother ship” autonomously several hours later.

The particular task: both the ice floe and the ship are in motion. The ship has to continue on its scheduled course to conduct other research, while wind, waves and currents cause the ice floe to drift. And it’s precisely the direction and speed with which it drifts that the multicopter needs to determine.

The development team pursued two approaches to allow the multicopter’s control system to compensate for the distortions in the positioning. “In the first approach, the multicopter remains in constant contact with a receiving station, which uses the copter’s GPS data to calculate the discrepancies. In other words, the multicopter transmits its GPS position to the station, which in turn transmits back the corresponding, adjusted coordinates,” explains Lehmenhecker.

“The second option: we use two onboard GPS receivers to calculate the actual change in the copter’s position. Though this is the better method, it’s also much more complex, and we’re still just starting to develop it,” clarifies the AWI engineer.

The system passed its first test, conducted on an ice floe in the arctic Fram Strait (79° N parallel), with flying colours: the team and copter were left on a floe. Now clear of the magnetic interference produced by electric motors on board the Polarstern, the team manually flew the copter roughly three kilometres out, to the edge of visual range. They then activated the autonomous return programme – and the multicopter flew to the pre-set coordinates and safely landed on its own.

Sascha Lehmenhecker and his colleagues in the AWI Deep-Sea Research Group came up with the idea for this development in connection with the use of sensitive devices under the ice. One example is the Group’s torpedo-shaped autonomous underwater vehicle (AUV) “Paul”, which explores the ocean beneath the sea ice. “In order to optimally plan its dives, it’s important to have precise information on the movement of the sea ice,” explains Lehmenhecker.

Conventionally, this was achieved by deploying “ice trackers” on floes with the help of a Zodiac boat or a helicopter – a difficult and time-consuming method. Further, the researchers generally try to avoid leaving the safety of the Polarstern wherever possible; after all, water temperatures hovering around the freezing point, jagged ice floes drifting to and fro, not to mention polar bears, represent additional risks and should be kept to a minimum.

The Deep-Sea Research Group first used a multicopter developed by the AWI during a 2012 expedition. Flying by remote control, it landed on the ice and used GPS to determine its position, then transmitted the data back to the research ship, which was monitoring Paul’s dive. In this way, the multicopter took on an important role, offering navigational support for the AUV.

Once each dive was complete, the ship had to return fairly close to the multicopter’s position: the pilot had to remotely guide the copter back to the ship, which was only possible in visual range. Extremely pleased by the successful test, which was conducted under the auspices of the Helmholtz Alliance “Robotic Exploration of Extreme Environments” (ROBEX), Sascha Lehmenhecker recaps what it means for researchers: “This new development will expand the service radius of our copters from visual range to as much as ten kilometres.”

Notes for Editors:

At our press office, Dr Folke Mehrtens (tel.: +49 471 4831-2007; e-mail: medien(at)awi.de) will be pleased to help you with any questions.

Please find printable images on: http://www.awi.de/en/about-us/service/press.html

The Alfred Wegener Institute conducts research in the Arctic, Antarctic and in the high and mid-latitude oceans. The Institute coordinates German polar research and provides important infrastructure such as the research icebreaker Polarstern and research stations in the Arctic and Antarctic to the national and international scientific world. The Alfred Wegener Institute is one of the 18 research centres of the Helmholtz Association, the largest scientific organisation in Germany.

Weitere Informationen:

http://www.awi.de/en/about-us/service/press/press-release/programmierter-multiko... Press Release on AWI homepage
http://www.robex-allianz.de/en/ ROBEX homepage

Ralf Röchert | idw - Informationsdienst Wissenschaft

More articles from Earth Sciences:

nachricht How much biomass grows in the savannah?
16.02.2017 | Friedrich-Schiller-Universität Jena

nachricht Canadian glaciers now major contributor to sea level change, UCI study shows
15.02.2017 | University of California - Irvine

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>