Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Prior great earthquakes unveiled at the western edge of the 1964 Alaska rupture

28.03.2014

Ever since the great magnitude 9.2 earthquake shook Alaska 50 years ago today, scientists have suspected that the quake’s rupture halted at the southwestern tip of Kodiak Island due to a natural barrier.

However, recent research suggests some large quakes can punch through these obstacles, and have done so in the past, according to a new study accepted for publication in Geophysical Research Letters, a journal of the American Geophysical Union.


Geologists from the U.S. Geological Survey and Tufts University extract a hand-driven core on Sitkinak Island, Alaska. The cores contain peat with interbedded sand layers that record inundation of the coast by prehistoric tsunamis. A new study suggests that large earthquakes broke through the western edge of the 1964 Alaska earthquake.

Credit: USGS


Geologists drive a core into marsh sediment to document interbedded peat and silt that records sudden vertical land movements associated with megathrust fault slip during large earthquakes.

Credit: USGS

U.S. Geological Survey scientists and researchers from partner institutions working on Sitkinak Island, 15 miles southwest of Kodiak Island, unearthed geologic records from the last 1,000 years of at least three large subduction ruptures – sudden dislocations in which one crustal plate lurches beneath another – that broke through the western edge of the 1964 Alaska earthquake.

Among the new findings is the first geologic evidence of the great 1788 Alaska earthquake and tsunami, a seismic event previously known only from historical writings from Russian settlements in the region at the time.

During the 1964 Alaska earthquake, a sudden slip on the subduction megathrust extended from near Kayak Island in the east to the southwestern tip of Kodiak Island in the west, resulting in widespread ground shaking and a damaging tsunami.

To gather information on great earthquakes prior to 1964, the research team uncovered stratigraphic evidence of land-level change and tsunami inundation along the Alaska-Aleutian megathrust on Sitkinak Island.

Hand-driven cores and tidal outcrops in a lagoon reveal five sharp changes in lithology and microfossils that record sudden upward and downward jerks during large earthquakes. Two of the changes correspond to the 1964 rupture and an earlier analog, while three sharp horizons mark ruptures that passed beneath Sitkinak Island, including the 1788 rupture.

“It’s been proposed that the edge of the 1964 rupture acts as a long-lived and stable barrier limiting the size of great earthquakes,” said Rich Briggs, lead author of the study and a USGS Research Geologist. “However, the geologic record suggests this isn’t the case, and that some, if not most large ruptures break through.

Future studies will aim to determine the sizes of these boundary-busting ruptures. Understanding this problem is important because hazard models depend on an accurate understanding of the locations and sizes of prehistoric earthquakes,” Briggs added.

“The Sitkinak results demonstrate the crucial role that microfossils such as diatoms and foraminifera play in improving our understanding of great earthquake ruptures,” said Simon Engelhart, a University of Rhode Island researcher and study coauthor. “They were the smoking gun that indicated both coseismic uplift and subsidence have occurred and, therefore, that Sitkinak Island is not a persistent rupture boundary.”

Geologic evidence of a sudden uplift and an extensive sand sheet are consistent with Russian accounts of an earthquake and tsunami in 1788, but prior to this study no geologic evidence of this great event had been found.

“The 1788 rupture had important consequences for Kodiak Island because it resulted in evacuation of the Russian outpost at Three Saints Bay (near Old Harbor) and resettlement at the present site of Kodiak (city),” said Briggs.  “Historical documents and our geologic observations suggest the 1788 earthquake ruptured offshore Kodiak and extended toward the Shumagin Islands rather than toward Anchorage.”

Mapping prehistoric earthquakes in subduction zones requires a combination of approaches to indirectly capture evidence of massive undersea ruptures. Land-level changes and tsunami inundation—commonly recorded as raised or downdropped coasts and extensive sand sheets—can be revealed by mapping, coring, microfossil analysis, and a variety of dating techniques.

These findings have implications for hazard maps and tectonics studies, the study authors emphasized.  An upcoming update of the USGS National Seismic Hazard Maps for Alaska will require a reevaluation of fault rupture histories.

“Understanding the ways faults have ruptured in the past is important because the paleoearthquake record gives us at least one set of scenarios to prepare for in the future,” said Briggs.  “Geologic information joins other critical data, such as seismological and geophysical observations, in helping us generate useful hazard models.”

Notes for Journalists
Journalists and public information officers (PIOs) of educational and scientific institutions who have registered with AGU can download a PDF copy of this article by clicking on this link: http://onlinelibrary.wiley.com/doi/10.1002/2014GL059380/abstract

Or, you may order a copy of the final paper by emailing your request to Nanci Bompey at nbompey@agu.org. Please provide your name, the name of your publication, and your phone number.

Neither the paper nor this press release is under embargo.

Title

“Uplift and subsidence reveal a non-persistent megathrust rupture boundary (Sitkinak Island, Alaska)”

Authors:
Richard W. Briggs:  U.S. Geological Survey, Geologic Hazards Science Center, Golden, Colorado, USA;

Simon E. Engelhart: Dept. of Geosciences, University of Rhode Island, Kingston, Rhode Island, USA;

Alan R. Nelson: U.S. Geological Survey, Geologic Hazards Science Center, Golden, Colorado, USA;

Tina Dura: Dept. of Earth and Environmental Science, University of Pennsylvania, Philadelphia, Pennsylvania, USA;

Andrew C. Kemp: Dept. of Earth and Ocean Sciences, Tufts University, Lane Hall, Medford, Massachusetts, USA;

Peter J. Haeussler: U.S. Geological Survey, Alaska Science Center, Anchorage, Alaska, USA;

D. Reide Corbett: Dept. of Geological Sciences, East Carolina University, Greenville, North Carolina, USA;

Stephen J. Angster: U.S. Geological Survey, Geologic Hazards Science Center, Golden, Colorado, USA;

Lee-Ann Bradley: U.S. Geological Survey, Geologic Hazards Science Center, Golden, Colorado, USA.

Contact information for the authors:
Richard Briggs, +1 (303) 273-8465, rbriggs@usgs.gov


AGU Contact:

Nanci Bompey
+1 (202) 777-7524
nbompey@agu.org

USGS Contact:
Heidi Koontz
+1 (303) 202-4763
hkoontz@usgs.gov

Media Contacts

Nanci Bompey | American Geophysical Union

Further reports about: Alaska Geologic Geological Geophysical Island earthquake rupture

More articles from Earth Sciences:

nachricht For a rare prairie orchid, science is making climate change local
12.02.2016 | USDA Forest Service - Northern Research Station

nachricht NASA sees Tropical Cyclone Winston form
12.02.2016 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Production of an AIDS vaccine in algae

Today, plants and microorganisms are heavily used for the production of medicinal products. The production of biopharmaceuticals in plants, also referred to as “Molecular Pharming”, represents a continuously growing field of plant biotechnology. Preferred host organisms include yeast and crop plants, such as maize and potato – plants with high demands. With the help of a special algal strain, the research team of Prof. Ralph Bock at the Max Planck Institute of Molecular Plant Physiology in Potsdam strives to develop a more efficient and resource-saving system for the production of medicines and vaccines. They tested its practicality by synthesizing a component of a potential AIDS vaccine.

The use of plants and microorganisms to produce pharmaceuticals is nothing new. In 1982, bacteria were genetically modified to produce human insulin, a drug...

Im Focus: The most accurate optical single-ion clock worldwide

Atomic clock experts from the Physikalisch-Technische Bundesanstalt (PTB) are the first research group in the world to have built an optical single-ion clock which attains an accuracy which had only been predicted theoretically so far. Their optical ytterbium clock achieved a relative systematic measurement uncertainty of 3 E-18. The results have been published in the current issue of the scientific journal "Physical Review Letters".

Atomic clock experts from the Physikalisch-Technische Bundesanstalt (PTB) are the first research group in the world to have built an optical single-ion clock...

Im Focus: Goodbye ground control: autonomous nanosatellites

The University of Würzburg has two new space projects in the pipeline which are concerned with the observation of planets and autonomous fault correction aboard satellites. The German Federal Ministry of Economic Affairs and Energy funds the projects with around 1.6 million euros.

Detecting tornadoes that sweep across Mars. Discovering meteors that fall to Earth. Investigating strange lightning that flashes from Earth's atmosphere into...

Im Focus: Flow phenomena on solid surfaces: Physicists highlight key role played by boundary layer velocity

Physicists from Saarland University and the ESPCI in Paris have shown how liquids on solid surfaces can be made to slide over the surface a bit like a bobsleigh on ice. The key is to apply a coating at the boundary between the liquid and the surface that induces the liquid to slip. This results in an increase in the average flow velocity of the liquid and its throughput. This was demonstrated by studying the behaviour of droplets on surfaces with different coatings as they evolved into the equilibrium state. The results could prove useful in optimizing industrial processes, such as the extrusion of plastics.

The study has been published in the respected academic journal PNAS (Proceedings of the National Academy of Sciences of the United States of America).

Im Focus: New study: How stable is the West Antarctic Ice Sheet?

Exceeding critical temperature limits in the Southern Ocean may cause the collapse of ice sheets and a sharp rise in sea levels

A future warming of the Southern Ocean caused by rising greenhouse gas concentrations in the atmosphere may severely disrupt the stability of the West...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Symposium on Climate Change Adaptation in Africa 2016

12.02.2016 | Event News

Travel grants available: Meet the world’s most proficient mathematicians and computer scientists

09.02.2016 | Event News

AKL’16: Experience Laser Technology Live in Europe´s Largest Laser Application Center!

02.02.2016 | Event News

 
Latest News

LIGO confirms RIT's breakthrough prediction of gravitational waves

12.02.2016 | Physics and Astronomy

Gene switch may repair DNA and prevent cancer

12.02.2016 | Life Sciences

Using 'Pacemakers' in spinal cord injuries

12.02.2016 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>