Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Princeton-led team finds secret ingredient for the health of tropical rainforests

10.12.2008
A team of researchers led by Princeton University scientists has found for the first time that tropical rainforests, a vital part of the Earth's ecosystem, rely on the rare trace element molybdenum to capture the nitrogen fertilizer needed to support their wildly productive growth. Most of the nitrogen that supports the rapid, lush growth of rainforests comes from tiny bacteria that can turn nitrogen in the air into fertilizer in the soil.

Until now, scientists had thought that phosphorus was the key element supporting the prodigious expansion of rainforests, according to Lars Hedin, a professor of ecology and evolutionary biology at Princeton University who led the research.

But an experiment testing the effects of various elements on test plots in lowland rainforests on the Gigante Peninsula in the Barro Colorado Nature Monument in Panama showed that areas treated with molybdenum withdrew more nitrogen from the atmosphere than other elements.

"We were surprised," said Hedin, who is also a professor in the Princeton Environmental Institute. "It's not what we were expecting."

The report, detailed in the Dec. 7 online edition of Nature Geoscience, will be the journal's cover story in its print edition.

Molybdenum, the team found, is essential for controlling the biological conversion of nitrogen in the atmosphere into natural soil nitrogen fertilizer, which in turn spurs plant growth. "Just like trace amounts of vitamins are essential for human health, this exceedingly rare trace metal is indispensable for the vital function of tropical rainforests in the larger Earth system," Hedin said. Molybdenum is 10,000 times less abundant than phosphorus and other major nutrients in these ecosystems.

The discovery has implications for global climate change policy, the scientists said. Previously, researchers knew little about rainforests' capacity to absorb the greenhouse gas carbon dioxide. If molybdenum is central to the biochemical processes involved in the uptake of carbon dioxide, then there may be limits to how much carbon that tropical rainforests can absorb.

The biological enzyme, nitrogenase, which converts atmospheric nitrogen into soil fertilizer, feeds on molybdenum, the researchers found. "Nitrogenase without molybdenum is like a car engine without spark plugs," said Alexander Barron, the lead author on the paper, who was a graduate student in Hedin's laboratory and earned his Ph.D. in ecology and evolutionary biology from Princeton in 2007 and who now is working on climate legislation in Congress.

Other authors on the paper from Princeton include: Anne Kraepiel, an associate research scholar in the Department of Chemistry; Nina Wurzburger, a research associate in the Department of Ecology and Evolutionary Biology; and Jean Philippe Bellenger, an associate research scholar in the Princeton Environmental Institute. S. Joseph Wright, who earned his bachelor's degree in biology from Princeton in 1974 and now is a staff scientist at the Smithsonian Tropical Institute in Panama, is also a contributing author.

Molybdenum, a lustrous, silvery metal, is found in soil, rock and sea water and in a range of enzymes vital to human health. Traces of the element have been found in Japanese swords dating back to the 14th century. In modern times, its high strength, good electrical conductivity and anticorrosive properties have made molybdenum desirable as an element of rocket engines, radiation shields, light bulb filaments and circuit boards.

The research was conducted with support from the National Science Foundation, the Andrew W. Mellon Foundation, the Smithsonian Scholarly Studies program, the Smithsonian Tropical Research Institute student fellowship program and the Environmental Protection Agency student fellowship program.

Kitta MacPherson | EurekAlert!
Further information:
http://www.princeton.edu

More articles from Earth Sciences:

nachricht Predicting unpredictability: Information theory offers new way to read ice cores
07.12.2016 | Santa Fe Institute

nachricht Sea ice hit record lows in November
07.12.2016 | University of Colorado at Boulder

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>