Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Preserved by ice: Glacial dams helped prevent erosion of Tibetan plateau

10.10.2008
The Tsangpo River is the highest major river in the world, starting at 14,500 feet elevation and plunging to the Bay of Bengal, scouring huge amounts of rock and soil along the way. Yet in its upper reaches, the powerful Tsangpo seems to have had little effect on the elevation of the Tibetan Plateau.

New research suggests that the plateau edge might have been preserved for thousands of years by ice during glacial advances and by glacial debris deposited at the mouth of many Tsangpo tributaries during warmer times when glaciers retreated. Those debris walls, or moraines, acted as dams that prevented the rapidly traveling water in the main Tsangpo gorge from carving upstream into the plateau.

"At the edge of the plateau, the river's erosion has been defeated because the dams have flattened the river's slope and reduced its ability to cut into the surrounding terrain, making it more like a lake," said David Montgomery, a University of Washington geomorphologist.

Montgomery is co-author of a paper in the Oct. 9 issue of Nature that describes a new hypothesis of why the Tibetan Plateau has maintained its elevation when it appears it should have been worn down in the area of the Tsangpo system.

The paper's lead author is Oliver Korup of the Swiss Federal Institute for Snow and Avalanche Research in Davos, Switzerland. The work was financed in part by the European Commission and the National Science Foundation in the U.S.

The researchers focused on the three primary rivers of the Tsangpo system, the Yarlung Tsangpo and its two major tributaries, the Yigong Tsangpo and the Parlung Tsangpo. The scientists mapped geologic evidence of more than 300 natural dams, including 260 moraines, that have formed repeatedly at the mouths of tributaries in the last 10,000 years to block water flow on the three main streams.

The first evidence of the dams was found at the edge of the Tibetan Plateau, and additional evidence continued to be found upstream, Montgomery said. The dams essentially formed giant lakes along the river and prevented the water from carving into bedrock.

"The glaciers seem to have helped preserve the edge of the plateau by keeping the river from ripping into it," he said. "This isn't the explanation for why the rest of the plateau is so well preserved, but it might work for this area where the Tsangpo crosses the edge of the plateau."

There are two well-recognized mechanisms that typically are thought to be responsible for preserving a feature such as the edge of the Tibetan Plateau. But one of them, the plateau's arid climate, is not to blame because the Tsangpo is already a large river at the point that it enters the world's deepest and fastest-eroding gorge. The other conventional explanation, that tectonic faults continually push new rock to the surface and thus offset any erosion by the river, might be at work in concert with the glacial damming, the scientists believe.

In the Tsangpo gorge, also called Yarlung Tsangpo Grand Canyon, the river plunges from about 10,000 feet to about 1,000 feet in a span of 150 miles. Eventually the river becomes the Brahmaputra River, flowing through India and Bangladesh and into the Bay of Bengal.

"Up in the gorge, the river is very steep and the erosion is very high, and one would think that back through geologic time it should have sliced upstream into the Tibetan Plateau," Montgomery said.

The question is why that didn't happen. Korup and Montgomery suspect that the glacial dams on tributaries right to the edge of the plateau prevented such pronounced erosion.

"It's a transition from where the river is doing all the erosion at lower elevations to where the glaciers are doing all the erosion at high elevations, and the glaciers are limited on how deeply they erode," Montgomery said. "They shave off the top but they don't erode farther down, and the rivers can't erode back past the glaciers."

Vince Stricherz | EurekAlert!
Further information:
http://www.washington.edu

Further reports about: Erosion Glacial dams Tibetan plateau moraines river's erosion

More articles from Earth Sciences:

nachricht Tiny microenvironments in the ocean hold clues to global nitrogen cycle
23.04.2018 | University of Rochester

nachricht Clear as mud: Desiccation cracks help reveal the shape of water on Mars
20.04.2018 | Geological Society of America

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Structured light and nanomaterials open new ways to tailor light at the nanoscale

23.04.2018 | Physics and Astronomy

On the shape of the 'petal' for the dissipation curve

23.04.2018 | Physics and Astronomy

Clean and Efficient – Fraunhofer ISE Presents Hydrogen Technologies at the HANNOVER MESSE 2018

23.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>