Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Prehistoric Response to Global Warming Informs Human Planning Today

11.03.2010
Archaeologists study the challenges faced by ancients in a warming world

Since 2004, University at Buffalo anthropologist Ezra Zubrow has worked intensively with teams of scientists in the Arctic regions of St. James Bay, Quebec, northern Finland and Kamchatka to understand how humans living 4,000 to 6,000 years ago reacted to climate changes.

"The circumpolar north is widely seen as an observatory for changing relations between human societies and their environment," Zubrow explains, "and analysis of data gathered from all phases of the study eventually will enable more effective collaboration between today's social, natural and medical sciences as they begin to devise adequate responses to the global warming the world faces today."

A slide show describing the work of Zubrow and colleagues can be viewed at http://bit.ly/d1dqVD.

This study, which will collect a vast array of archaeological and paleoenvironmental data, began with the Social Change and the Environment in Nordic Prehistory Project (SCENOP), a major international research study by scientists from the U.S., Canada and Europe of prehistoric sites in Northern Quebec and Finland.

Phases I and II of the study were headed by André Costopoulos and Gail Chmura of McGill University (Montreal), Jari Okkonen of Finland's Oulu University, and Zubrow, who directs UB's Social Systems Geographic Information Systems Lab.

Phase III, underway now, is the International Circumpolar Archaeological Project (ICAP) funded by $845,796 from the National Science Foundation's Arctic Social Sciences Program of the Office of Polar Programs, which is supported by the American Recovery and Reinvestment Act (ARRA). Headed by Zubrow, it focuses on a third sub-arctic region: Siberia's remote Kamchatka peninsula, a rough and extremely volcanic wilderness region the size of California.

"With forecasts of sea-level rises and changing weather patterns, people today have been forewarned about some likely ramifications of climate change," Zubrow says, "but those living thousands of years ago, during the Holocene climatic optimum, could not have known what lay ahead of them and how their land -- and lives -- would be changing.

"This was a slower change," he says, "about one-third the rate we face today. In the Holocene period, it took a thousand years for the earth to warm as much as it has over the past 300 years -- roughly the time spanned since the beginning of the Industrial Revolution.

"As in other phases of the study," Zubrow says, "our goal in Kamchatka is to clarify ancient regional chronologies and understand the ways prehistoric humans adapted to significant environmental changes, including warming, earthquakes, tsunamis, volcanic eruptions and the seismic uplift of marine terraces that impacted the environment during the period in question."

He points out that, despite our more sophisticated prediction technology, and technologies overall, many of the world's people have residences and lifestyles that are just as vulnerable to climatic shift as those of our prehistoric ancestors. They, too, live along estuaries and coastlines subject to marked alteration as oceans rise.

Most of the ARRA stimulus money used in the project is spent in the United States on salaries and research at various universities. Zubrow reiterates a point he often makes with his students: "This research funding is good for science, good for the economy, good for the government and good for the international reputation of the United States."

Ultimately, information gathered over the next year by the geologists, archaeologists, geochemists, volcanologists and paleoecologists on Zubrow's team will be compared with data from the two other ICAP sites.

During an additional study phase funded by a $300,000 grant from NSF, through the ARRA, Zubrow will conduct archaeological research in Mexico to ascertain how arctic climatic changes during the mid- and post-Holocene era affected human populations in a changing temperate climate.

In addition to his position at UB, Zubrow holds academic positions at the University of Toronto and Cambridge University (UK). He is also senior research scientist at the National Center for Geographic Information Analysis Laboratory, which he helped found. His work reflects a diverse set of academic interests -- arctic archaeology and anthropology, climate change, human ecology and demography -- and a deep interest in such social issues as heritage, disability and literacy.

The University at Buffalo is a premier research-intensive public university, a flagship institution in the State University of New York system and its largest and most comprehensive campus. UB's more than 28,000 students pursue their academic interests through more than 300 undergraduate, graduate and professional degree programs. Founded in 1846, the University at Buffalo is a member of the Association of American Universities.

Patricia Donovan | EurekAlert!
Further information:
http://www.buffalo.edu

More articles from Earth Sciences:

nachricht NASA sees quick development of Hurricane Dora
27.06.2017 | NASA/Goddard Space Flight Center

nachricht Collapse of the European ice sheet caused chaos
27.06.2017 | CAGE - Center for Arctic Gas Hydrate, Climate and Environment

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

For a chimpanzee, one good turn deserves another

27.06.2017 | Life Sciences

Collapse of the European ice sheet caused chaos

27.06.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>