Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Prehistoric Response to Global Warming Informs Human Planning Today

11.03.2010
Archaeologists study the challenges faced by ancients in a warming world

Since 2004, University at Buffalo anthropologist Ezra Zubrow has worked intensively with teams of scientists in the Arctic regions of St. James Bay, Quebec, northern Finland and Kamchatka to understand how humans living 4,000 to 6,000 years ago reacted to climate changes.

"The circumpolar north is widely seen as an observatory for changing relations between human societies and their environment," Zubrow explains, "and analysis of data gathered from all phases of the study eventually will enable more effective collaboration between today's social, natural and medical sciences as they begin to devise adequate responses to the global warming the world faces today."

A slide show describing the work of Zubrow and colleagues can be viewed at http://bit.ly/d1dqVD.

This study, which will collect a vast array of archaeological and paleoenvironmental data, began with the Social Change and the Environment in Nordic Prehistory Project (SCENOP), a major international research study by scientists from the U.S., Canada and Europe of prehistoric sites in Northern Quebec and Finland.

Phases I and II of the study were headed by André Costopoulos and Gail Chmura of McGill University (Montreal), Jari Okkonen of Finland's Oulu University, and Zubrow, who directs UB's Social Systems Geographic Information Systems Lab.

Phase III, underway now, is the International Circumpolar Archaeological Project (ICAP) funded by $845,796 from the National Science Foundation's Arctic Social Sciences Program of the Office of Polar Programs, which is supported by the American Recovery and Reinvestment Act (ARRA). Headed by Zubrow, it focuses on a third sub-arctic region: Siberia's remote Kamchatka peninsula, a rough and extremely volcanic wilderness region the size of California.

"With forecasts of sea-level rises and changing weather patterns, people today have been forewarned about some likely ramifications of climate change," Zubrow says, "but those living thousands of years ago, during the Holocene climatic optimum, could not have known what lay ahead of them and how their land -- and lives -- would be changing.

"This was a slower change," he says, "about one-third the rate we face today. In the Holocene period, it took a thousand years for the earth to warm as much as it has over the past 300 years -- roughly the time spanned since the beginning of the Industrial Revolution.

"As in other phases of the study," Zubrow says, "our goal in Kamchatka is to clarify ancient regional chronologies and understand the ways prehistoric humans adapted to significant environmental changes, including warming, earthquakes, tsunamis, volcanic eruptions and the seismic uplift of marine terraces that impacted the environment during the period in question."

He points out that, despite our more sophisticated prediction technology, and technologies overall, many of the world's people have residences and lifestyles that are just as vulnerable to climatic shift as those of our prehistoric ancestors. They, too, live along estuaries and coastlines subject to marked alteration as oceans rise.

Most of the ARRA stimulus money used in the project is spent in the United States on salaries and research at various universities. Zubrow reiterates a point he often makes with his students: "This research funding is good for science, good for the economy, good for the government and good for the international reputation of the United States."

Ultimately, information gathered over the next year by the geologists, archaeologists, geochemists, volcanologists and paleoecologists on Zubrow's team will be compared with data from the two other ICAP sites.

During an additional study phase funded by a $300,000 grant from NSF, through the ARRA, Zubrow will conduct archaeological research in Mexico to ascertain how arctic climatic changes during the mid- and post-Holocene era affected human populations in a changing temperate climate.

In addition to his position at UB, Zubrow holds academic positions at the University of Toronto and Cambridge University (UK). He is also senior research scientist at the National Center for Geographic Information Analysis Laboratory, which he helped found. His work reflects a diverse set of academic interests -- arctic archaeology and anthropology, climate change, human ecology and demography -- and a deep interest in such social issues as heritage, disability and literacy.

The University at Buffalo is a premier research-intensive public university, a flagship institution in the State University of New York system and its largest and most comprehensive campus. UB's more than 28,000 students pursue their academic interests through more than 300 undergraduate, graduate and professional degree programs. Founded in 1846, the University at Buffalo is a member of the Association of American Universities.

Patricia Donovan | EurekAlert!
Further information:
http://www.buffalo.edu

More articles from Earth Sciences:

nachricht From volcano's slope, NASA instrument looks sky high and to the future
27.04.2017 | NASA/Goddard Space Flight Center

nachricht Penn researchers quantify the changes that lightning inspires in rock
27.04.2017 | University of Pennsylvania

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>