Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Prehistoric climate change due to cosmic crash in Canada

03.09.2013
Dartmouth-led team reveals cause of global climate shift 12,900 years ago

For the first time, a dramatic global climate shift has been linked to the impact in Quebec of an asteroid or comet, Dartmouth researchers and their colleagues report in a new study.


The high temperatures of the meteorite impact 12,900 years ago produced mm-sized spherules of melted glass with the mullite and corundum crystal structure shown here. Credit: Mukul Sharma

The cataclysmic event wiped out many of the planet's large mammals and may have prompted humans to start gathering and growing some of their food rather than solely hunting big game.

The findings appear next week in the online Early Edition of the Proceedings of the National Academy of Sciences. A preprint of the article is available to journalists starting Wednesday, Aug. 28, at http://www.eurekalert.org/account.php.

The impact occurred about 12,900 years ago, at the beginning of the Younger Dryas period, and marks an abrupt global change to a colder, dryer climate with far-reaching effects on both animals and humans. In North America, the big animals all vanished, including mastodons, camels, giant ground sloths and saber-toothed cats. Their human hunters, known to archaeologists as the Clovis people, set aside their heavy-duty spears and turned to a hunter-gatherer subsistence diet of roots, berries and smaller game.

"The Younger Dryas cooling impacted human history in a profound manner," says Dartmouth Professor Mukul Sharma, a co-author of the study. "Environmental stresses may also have caused Natufians in the Near East to settle down for the first time and pursue agriculture."

It is not disputed that these powerful environmental changes occurred, but there has long been controversy over their cause. The classic view of the Younger Dryas cooling interlude has been that an ice dam in the North American ice sheet ruptured, releasing a massive quantity of freshwater into the Atlantic Ocean. The sudden influx is thought to have shut down the ocean currents that move tropical water northward, resulting in the cold, dry climate of the Younger Dryas.

But Sharma and his co-authors have discovered conclusive evidence linking an extraterrestrial impact with this environmental transformation. The report focuses on spherules, or droplets of solidified molten rock expelled by the impact of a comet or meteor. The spherules in question were recovered from Younger Dryas boundary layers at sites in Pennsylvania and New Jersey, the layers having been deposited at the beginning of the period. The geochemistry and mineralogy profiles of the spherules are identical to rock found in southern Quebec, where Sharma and his colleagues argue the impact took place.

"We have for the first time narrowed down the region where a Younger Dryas impact did take place," says Sharma, "even though we have not yet found its crater." There is a known impact crater in Quebec — the 4-kilometer wide Corossal crater -- but based on the team's mineralogical and geochemical studies, it is not the impact source for the material found in Pennsylvania and New Jersey.

People have written about many impacts in different parts of the world based on the presence of spherules. "It may well have taken multiple concurrent impacts to bring about the extensive environmental changes of the Younger Dryas," says Sharma. "However, to date no impact craters have been found and our research will help track one of them down."

Broadcast studios: Dartmouth has TV and radio studios available for interviews. For more information, visit: http://www.dartmouth.edu/~opa/radio-tv-studios/

John Cramer | EurekAlert!
Further information:
http://www.dartmouth.edu
http://www.dartmouth.edu/~opa/radio-tv-studios/

More articles from Earth Sciences:

nachricht In times of climate change: What a lake’s colour can tell about its condition
21.09.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?
21.09.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>