Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New predictions for sea level rise

28.07.2009
Fossil coral data and temperature records derived from ice-core measurements have been used to place better constraints on future sea level rise, and to test sea level projections.

The results are published today in Nature Geoscience and predict that the amount of sea level rise by the end of this century will be between 7- 82 cm – depending on the amount of warming that occurs – a figure similar to that projected by the IPCC report of 2007.

Placing limits on the amount of sea level rise over the next century is one of the most pressing challenges for climate scientists. The uncertainties around different methods to achieve accurate predictions are highly contentious because the response of the Greenland and Antarctic ice sheets to warming is not well understood.

Dr Mark Siddall from the University of Bristol, together with colleagues from Switzerland and the US, used fossil coral data and temperature records derived from ice-core measurements to reconstruct sea level fluctuations in response to changing climate for the past 22,000 years, a period that covers the transition from glacial maximum to the warm Holocene interglacial period.

By considering how sea level has responded to temperature since the end of the last glacial period, Siddall and colleagues predict that the amount of sea level rise by the end of this century will be similar to that projected by the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC).

Dr Siddall said: "Given that the two approaches are entirely independent of each other, this result strengthens the confidence with which one may interpret the IPCC results. It is of vital importance that this semi-empirical result, based on a wealth of data from fossil corals, converges so closely with the IPCC estimates.

"Furthermore, as the time constant of the sea level response is 2,900 years, our model indicates that the impact of twentieth-century warming on sea level will continue for many centuries into the future. It will therefore constitute an important component of climate change in the future."

The IPCC used sophisticated climate models to carry out their analysis, whereas Siddall and colleagues used a simple, conceptual model which is trained to match the sea level changes that have occurred since the end of the last ice age.

The new model explains much of the variability observed over the past 22,000 years and, in response to the minimum (1.1 oC) and maximum (6.4 oC) warming projected for AD 2100 by the IPCC model, this new model predicts, respectively, 7 and 82 cm of sea-level rise by the end of this century. The IPCC model predicted a slightly narrower range of sea level rise – between 18 and 76 cm.

The researchers emphasise that because we will be at least 200 years into a perturbed climate state by the end of this century, the lessons of long-term change in the past may be key to understanding future change. END

The paper: Constraints on future sea-level rise from past sea-level reconstructions. Mark Siddall, Thomas F. Stocker and Peter U. Clark. Nature Geoscience: http://dx.doi.org/10.1038/NGEO587. Once the paper is published electronically, the DOI can be used to retrieve the abstract and full text (abstracts are available to everyone, full text only to subscribers) by adding it to the following URL: http://dx.doi.org/

Funding: Mark Siddall acknowledges support from Lamont Doherty Earth Observatory, where part of this work was done, and the University of Bristol (LDEO and RCUK fellowships). Support from the Swiss National Science Foundation and the University of Bern (Thomas F. Stocker) and the US National Science Foundation (Peter U. Clark) is also acknowledged.

Issued by: Public Relations Office, Communications and Marketing Services, University of Bristol. Contact: Cherry Lewis, Research Communications Manager. Tel: 0117 928 8086, mob: 07729 421885, email: Cherry.lewis@bristol.ac.uk

Cherry Lewis | EurekAlert!
Further information:
http://www.bristol.ac.uk

More articles from Earth Sciences:

nachricht Heidelberg Researchers Study Unique Underwater Stalactites
24.11.2017 | Universität Heidelberg

nachricht Lightning, with a chance of antimatter
24.11.2017 | Kyoto University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

IceCube experiment finds Earth can block high-energy particles from nuclear reactions

24.11.2017 | Physics and Astronomy

A 'half-hearted' solution to one-sided heart failure

24.11.2017 | Health and Medicine

Heidelberg Researchers Study Unique Underwater Stalactites

24.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>