Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Predicting the Extent of Flash Flooding

12.03.2015

Devastating flooding, such as Iowa's Flood of 2008, motivated a team of researchers from the University of Iowa and Iowa Flood Center to analyze a hydrologic model with the potential to predict the extent of flooding based on predicted rain patterns

Devastating floodwaters such as those experienced during Iowa's Flood of 2008 -- which swamped many Iowa communities, along with ten square miles of Cedar Rapids -- are notoriously difficult to predict.


Aneta Goska/Iowa Flood Center

June 2013 Flooding of the Iowa River in Iowa City, Iowa.

So a team of University of Iowa mathematicians and hydrologists collaborating with the Iowa Flood Center set out to gain a better understanding of flood genesis and the factors impacting it. They were able to do this by zeroing in on the impacts of certain rainfall patterns at the smallest unit of a river basin: the hillslope scale.

This week in the journal Chaos, from AIP Publishing, the team describes how they analyzed the nonlinear dynamics of a recently proposed hydrological model at the hillslope-scale under fluctuating precipitation. The study appears as one of a special collection of related articles in the March issue of the journal, which is focused on "Nonlinear Dynamics for Planet Earth." See http://tinyurl.com/kl28r53

The proposed hydrological model that is the subject of the new study "describes a mass balance among volumes of water at the hillslope scale," said Rodica Curtu, an associate professor in the Department of Mathematics at the University of Iowa, working on the project with Morgan Fonley, a graduate student. "Some of these volumes are easily observed, such as ponded water and streamflow, while others such as water in unsaturated areas and saturated zones of soil are more difficult to observe."

When this model is brought to equilibrium, it exhibits a natural tendency to amplify some oscillations but dampen others. "The deciding factor about this behavior is the frequency at which the oscillations are applied to the model via precipitation patterns," she pointed out.

If the hillslope system "experiences a certain frequency of rainfall, the soil becomes the least likely to take in water -- and instead puts it all in the nearest river so the streamflow exhibits large spikes of water," Curtu said. The mathematics involved tap into methods from the theory of nonlinear dynamical systems.

The key significance of this work? Mechanistic description and mathematical investigation of physical processes "can be more enlightening than model calibration, when studying nonlinear phenomena," Curtu said. This is because, she explained, mechanistic, physics-based equations “may not only simulate processes under investigation, but also uncover some of their underlying properties."

"In this case, by using physical parameters to describe a realistic hillslope, we found a pattern of precipitation that yields the greatest -- most amplified -- runoff coefficient, which determines the manner and how fast water will reach the river link."

The team's research sets up a framework by which future hillslope-soil models can be analyzed to predict the worst possible rain pattern that could lead the hillslope to flood, Curtu noted. This can be used to predict the extent of flooding possibilities based on predicted rain patterns.

Next up, the researchers will consider the effects of these streamflow oscillations once they reach the river network. Because the oscillations are occurring separately at each river link, "streamflows interact in ways that can amplify or destroy the oscillations as they combine in the river network," said Curtu.

Since this is a framework for soil models, Curtu and colleagues offer further improvements to the soil model to create a more accurate representation of water in the soil. "Using this framework, we can potentially find other factors that impact the extent of flooding both at the small hillslope scale and at the larger river catchment scale," she added. "Our work will continue in this direction with our Iowa Flood Center collaborators -- Witold Krajewski, Ricardo Mantilla and Scott Small."

The article, "Nonlinear response in runoff magnitude to fluctuating rain patterns," by Rodica Curtu and Morgan Fonley will be published in the journal CHAOS on March 10, 2015 (DOI: 10.1063/1.4913758). After that date it can be accessed at: http://scitation.aip.org/content/aip/journal/chaos/25/3/10.1063/1.4913758

This work received funding from the National Science Foundation (Award Number DMS-1025483).

ABOUT THE JOURNAL

Chaos: An Interdisciplinary Journal of Nonlinear Science is devoted to increasing the understanding of nonlinear phenomena and describing the manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines. See: http://chaos.aip.org

Contact Information
Jason Socrates Bardi, AIP
+1 240-535-4954
jbardi@aip.org
@jasonbardi

Jason Socrates Bardi, AIP | newswise

Further reports about: AIP Flash Flooding flood oscillations physics precipitation rainfall

More articles from Earth Sciences:

nachricht NASA examines Peru's deadly rainfall
24.03.2017 | NASA/Goddard Space Flight Center

nachricht Steep rise of the Bernese Alps
24.03.2017 | Universität Bern

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>