Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Predicting the Extent of Flash Flooding

12.03.2015

Devastating flooding, such as Iowa's Flood of 2008, motivated a team of researchers from the University of Iowa and Iowa Flood Center to analyze a hydrologic model with the potential to predict the extent of flooding based on predicted rain patterns

Devastating floodwaters such as those experienced during Iowa's Flood of 2008 -- which swamped many Iowa communities, along with ten square miles of Cedar Rapids -- are notoriously difficult to predict.


Aneta Goska/Iowa Flood Center

June 2013 Flooding of the Iowa River in Iowa City, Iowa.

So a team of University of Iowa mathematicians and hydrologists collaborating with the Iowa Flood Center set out to gain a better understanding of flood genesis and the factors impacting it. They were able to do this by zeroing in on the impacts of certain rainfall patterns at the smallest unit of a river basin: the hillslope scale.

This week in the journal Chaos, from AIP Publishing, the team describes how they analyzed the nonlinear dynamics of a recently proposed hydrological model at the hillslope-scale under fluctuating precipitation. The study appears as one of a special collection of related articles in the March issue of the journal, which is focused on "Nonlinear Dynamics for Planet Earth." See http://tinyurl.com/kl28r53

The proposed hydrological model that is the subject of the new study "describes a mass balance among volumes of water at the hillslope scale," said Rodica Curtu, an associate professor in the Department of Mathematics at the University of Iowa, working on the project with Morgan Fonley, a graduate student. "Some of these volumes are easily observed, such as ponded water and streamflow, while others such as water in unsaturated areas and saturated zones of soil are more difficult to observe."

When this model is brought to equilibrium, it exhibits a natural tendency to amplify some oscillations but dampen others. "The deciding factor about this behavior is the frequency at which the oscillations are applied to the model via precipitation patterns," she pointed out.

If the hillslope system "experiences a certain frequency of rainfall, the soil becomes the least likely to take in water -- and instead puts it all in the nearest river so the streamflow exhibits large spikes of water," Curtu said. The mathematics involved tap into methods from the theory of nonlinear dynamical systems.

The key significance of this work? Mechanistic description and mathematical investigation of physical processes "can be more enlightening than model calibration, when studying nonlinear phenomena," Curtu said. This is because, she explained, mechanistic, physics-based equations “may not only simulate processes under investigation, but also uncover some of their underlying properties."

"In this case, by using physical parameters to describe a realistic hillslope, we found a pattern of precipitation that yields the greatest -- most amplified -- runoff coefficient, which determines the manner and how fast water will reach the river link."

The team's research sets up a framework by which future hillslope-soil models can be analyzed to predict the worst possible rain pattern that could lead the hillslope to flood, Curtu noted. This can be used to predict the extent of flooding possibilities based on predicted rain patterns.

Next up, the researchers will consider the effects of these streamflow oscillations once they reach the river network. Because the oscillations are occurring separately at each river link, "streamflows interact in ways that can amplify or destroy the oscillations as they combine in the river network," said Curtu.

Since this is a framework for soil models, Curtu and colleagues offer further improvements to the soil model to create a more accurate representation of water in the soil. "Using this framework, we can potentially find other factors that impact the extent of flooding both at the small hillslope scale and at the larger river catchment scale," she added. "Our work will continue in this direction with our Iowa Flood Center collaborators -- Witold Krajewski, Ricardo Mantilla and Scott Small."

The article, "Nonlinear response in runoff magnitude to fluctuating rain patterns," by Rodica Curtu and Morgan Fonley will be published in the journal CHAOS on March 10, 2015 (DOI: 10.1063/1.4913758). After that date it can be accessed at: http://scitation.aip.org/content/aip/journal/chaos/25/3/10.1063/1.4913758

This work received funding from the National Science Foundation (Award Number DMS-1025483).

ABOUT THE JOURNAL

Chaos: An Interdisciplinary Journal of Nonlinear Science is devoted to increasing the understanding of nonlinear phenomena and describing the manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines. See: http://chaos.aip.org

Contact Information
Jason Socrates Bardi, AIP
+1 240-535-4954
jbardi@aip.org
@jasonbardi

Jason Socrates Bardi, AIP | newswise

Further reports about: AIP Flash Flooding flood oscillations physics precipitation rainfall

More articles from Earth Sciences:

nachricht A close-up look at an uncommon underwater eruption
11.01.2018 | Woods Hole Oceanographic Institution

nachricht Environmental history told by sludge: Global warming lets the dead zones in the Black Sea grow
10.01.2018 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Gran Chaco: Biodiversity at High Risk

17.01.2018 | Ecology, The Environment and Conservation

Only an atom thick: Physicists succeed in measuring mechanical properties of 2D monolayer materials

17.01.2018 | Physics and Astronomy

Fraunhofer HHI receives AIS Technology Innovation Award 2018 for 3D Human Body Reconstruction

17.01.2018 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>