Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Predicting the Extent of Flash Flooding

12.03.2015

Devastating flooding, such as Iowa's Flood of 2008, motivated a team of researchers from the University of Iowa and Iowa Flood Center to analyze a hydrologic model with the potential to predict the extent of flooding based on predicted rain patterns

Devastating floodwaters such as those experienced during Iowa's Flood of 2008 -- which swamped many Iowa communities, along with ten square miles of Cedar Rapids -- are notoriously difficult to predict.


Aneta Goska/Iowa Flood Center

June 2013 Flooding of the Iowa River in Iowa City, Iowa.

So a team of University of Iowa mathematicians and hydrologists collaborating with the Iowa Flood Center set out to gain a better understanding of flood genesis and the factors impacting it. They were able to do this by zeroing in on the impacts of certain rainfall patterns at the smallest unit of a river basin: the hillslope scale.

This week in the journal Chaos, from AIP Publishing, the team describes how they analyzed the nonlinear dynamics of a recently proposed hydrological model at the hillslope-scale under fluctuating precipitation. The study appears as one of a special collection of related articles in the March issue of the journal, which is focused on "Nonlinear Dynamics for Planet Earth." See http://tinyurl.com/kl28r53

The proposed hydrological model that is the subject of the new study "describes a mass balance among volumes of water at the hillslope scale," said Rodica Curtu, an associate professor in the Department of Mathematics at the University of Iowa, working on the project with Morgan Fonley, a graduate student. "Some of these volumes are easily observed, such as ponded water and streamflow, while others such as water in unsaturated areas and saturated zones of soil are more difficult to observe."

When this model is brought to equilibrium, it exhibits a natural tendency to amplify some oscillations but dampen others. "The deciding factor about this behavior is the frequency at which the oscillations are applied to the model via precipitation patterns," she pointed out.

If the hillslope system "experiences a certain frequency of rainfall, the soil becomes the least likely to take in water -- and instead puts it all in the nearest river so the streamflow exhibits large spikes of water," Curtu said. The mathematics involved tap into methods from the theory of nonlinear dynamical systems.

The key significance of this work? Mechanistic description and mathematical investigation of physical processes "can be more enlightening than model calibration, when studying nonlinear phenomena," Curtu said. This is because, she explained, mechanistic, physics-based equations “may not only simulate processes under investigation, but also uncover some of their underlying properties."

"In this case, by using physical parameters to describe a realistic hillslope, we found a pattern of precipitation that yields the greatest -- most amplified -- runoff coefficient, which determines the manner and how fast water will reach the river link."

The team's research sets up a framework by which future hillslope-soil models can be analyzed to predict the worst possible rain pattern that could lead the hillslope to flood, Curtu noted. This can be used to predict the extent of flooding possibilities based on predicted rain patterns.

Next up, the researchers will consider the effects of these streamflow oscillations once they reach the river network. Because the oscillations are occurring separately at each river link, "streamflows interact in ways that can amplify or destroy the oscillations as they combine in the river network," said Curtu.

Since this is a framework for soil models, Curtu and colleagues offer further improvements to the soil model to create a more accurate representation of water in the soil. "Using this framework, we can potentially find other factors that impact the extent of flooding both at the small hillslope scale and at the larger river catchment scale," she added. "Our work will continue in this direction with our Iowa Flood Center collaborators -- Witold Krajewski, Ricardo Mantilla and Scott Small."

The article, "Nonlinear response in runoff magnitude to fluctuating rain patterns," by Rodica Curtu and Morgan Fonley will be published in the journal CHAOS on March 10, 2015 (DOI: 10.1063/1.4913758). After that date it can be accessed at: http://scitation.aip.org/content/aip/journal/chaos/25/3/10.1063/1.4913758

This work received funding from the National Science Foundation (Award Number DMS-1025483).

ABOUT THE JOURNAL

Chaos: An Interdisciplinary Journal of Nonlinear Science is devoted to increasing the understanding of nonlinear phenomena and describing the manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines. See: http://chaos.aip.org

Contact Information
Jason Socrates Bardi, AIP
+1 240-535-4954
jbardi@aip.org
@jasonbardi

Jason Socrates Bardi, AIP | newswise

Further reports about: AIP Flash Flooding flood oscillations physics precipitation rainfall

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>