Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Potential Iceland eruption could pump acid into European airspace

12.06.2012
A modern recurrence of an extraordinary type of volcanic eruption in Iceland could inject large quantities of hazardous gases into North Atlantic and European flight corridors, potentially for months at a time, a new study suggests.

Using computer simulations, researchers are investigating the likely atmospheric effects if a “flood lava” eruption took place in Iceland today. Flood lava eruptions, which stand out for the sheer amounts of lava and sulfurous gases they release and the way their lava sprays from cracks like fiery fountains, have occurred in Iceland four times in roughly the past thousand years, records indicate, the most recent being the deadly and remarkable eruption of Iceland’s volcano Laki in 1783-84.

When Laki sprang to life on June 8, 1783, it generated a sulfuric acid haze that dispersed over Iceland, France, England, the Netherlands, Sweden, Italy, and other countries. It killed a fifth of Iceland’s population and three-quarters of the island’s livestock. It also destroyed crops, withered vegetation, and sowed human disease and death in several Northern European nations. During the eight months that Laki erupted, the volcano blasted 122 million tons of sulfur dioxide into the atmosphere – seven times more than did the 1991 Mt. Pinatubo eruption in the Philippines and approximately 50 to 100 times more per day than Iceland’s Eyjafjallajökull volcano released in 2010.

Researchers have found evidence in previous studies that a modern Laki-like eruption could disrupt European air traffic. Now, using two computer models that simulate physical and chemical behaviors of volcanic emissions, atmospheric scientist Anja Schmidt of the University of Leeds in the U.K. and her colleagues are refining scientific understanding of the likely concentrations and distributions of hazardous sulfur dioxide gas and sulfuric acid from such an event.

If a Laki-like eruption were to begin in late spring or summer, as it did in 1783, the daily average concentrations of sulfur dioxide during that first month would exceed 40 parts per billion by volume (ppbv) in up to a third of the North Atlantic and European airspace, the new simulations show. That concentration falls just under the level of 47 ppbv at which the World Health Organization (WHO) deems chronic exposure to the gas a health hazard, although short-term exposures are considered hazardous only at much higher concentrations. In up to 10 percent of the air space, concentrations would exceed five times the WHO chronic exposure guideline, the researchers found.

The emissions wouldn’t come from Laki itself, which volcanologists say has spent its fury, but could explode from several other Icelandic volcanic systems.

Most sulfur dioxide gas emitted by volcanoes rapidly undergoes chemical reactions to form an aerosol – minuscule particles suspended in the atmosphere -- of sulfuric acid droplets. In the new simulations – focusing again on the first month of the eruption -- average daily concentrations of the droplets, in up to 10 percent of the air space, would exceed 10 times London’s average daily concentration of the corrosive pollutant, the researchers found.

“It’s known that flying through a volcanic ash cloud can damage aircraft. In the case of a Laki-type eruption, high sulfur dioxide and sulfuric acid concentrations will have to be considered as an additional hazard,” Schmidt said. An acceptable level of exposure for aircraft and their passengers is something for government aviation officials and industry to address, she added.

Schmidt presented the preliminary results from the study today in Selfoss, Iceland at the Chapman Conference on Volcanism and the Atmosphere, a meeting sponsored by the American Geophysical Union (AGU). Her collaborators include Kenneth Carslaw, also of Leeds, Claire Witham and Matthew Hort of the UK Met Office, in Exeter, and Thor Thordarson of the University of Edinburgh, also in the U.K. Previous work by Thordarson and others had suggested that a new Laki-like eruption could disrupt air traffic.

When Eyjafjallajökull erupted two years ago, its ash plume created a huge air traffic snarl across Europe for about a week, causing cancellations of more than 100,000 flights, according to published reports. A flood-lava eruption would also spew ash, but it would release far more sulfur dioxide than a volcano like Eyjafjallajökull does, Schmidt explained.

Judging from the past, a Laki-like eruption would likely continue for a lot longer than did Eyjafjallajökull’s outburst, possibly cancelling many more flights, Schmidt said. Also, the eruption would be most intense in the first few months, which suggests that atmospheric effects would remain at about the same levels for the first two to three months. “But really, it’s the next step in our research to analyze later stages of the impact and determine if and where emission concentrations might pose a short-term exposure hazard,” she noted.

Schmidt has previously investigated the human health implications of a modern Laki-like eruption. A study published last year in Proceedings of the National Academy of Sciences, on which she was the first author, found that a modern Laki-type eruption could result in 142,000 deaths as a result of cardiopulmonary damage that its emissions would inflict on today’s Europeans.
It’s difficult to predict exactly what the consequences will be if and when another flood-lava eruption roils the skies of Iceland, Schmidt said, because so many variables affect the behaviour of a volcano and therefore its impacts on aviation and society. But, she added, with sound estimates of the range of possibilities, and how various factors influence them, aviation officials and the airline industry, health care providers and the rest of society can better prepare and plan for the harsh reality of the next Laki-like event.

Title:
“The potential for microbial life in the highest elevation (>6000 m.a.s.l.) mineral soils of the Atacama region

Kate Ramsayer | American Geophysical Union
Further information:
http://www.agu.org
http://www.agu.org/news/press/pr_archives/2012/2012-29.shtml

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>