Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Popular Solar System Orbits Result in 'Planet Pileups'

20.03.2012
In young solar systems emerging around baby stars, some orbits are more popular than others, resulting in "planet pileups" and "planet deserts."

Computer simulations have revealed a plausible explanation for a phenomenon that has puzzled astronomers: Rather than occupying orbits at regular distances from a star, giant gas planets similar to Jupiter and Saturn appear to prefer to occupy certain regions in mature solar systems while staying clear of others.

"Our results show that the final distribution of planets does not vary smoothly with distance from the star, but instead has clear Œdeserts' ­ deficits of planets ­ and Œpileups' of planets at particular locations,"

said Ilaria Pascucci, an assistant professor at the University of Arizona's Lunar and Planetary Laboratory.

"Our models offer a plausible explanation for the pileups of giant planets observed recently detected in exoplanet surveys," said Richard Alexander of the University of Leicester in the United Kingdom.

Alexander and Pascucci identified high-energy radiation from baby sun-like stars as the likely force that carves gaps in protoplanetary disks, the clouds of gas and dust that swirl around young stars and provide the raw materials for planets. The gaps then act as barricades, corralling planets into certain orbits.

The exact locations of those gaps depend on the planets' mass, but they generally occur in an area between 1 and 2 astronomical units from the star. One astronomical unit, or AU, marks the average distance from the Earth to the sun. The findings are to be published in the journal Monthly Notices of the Royal Astronomical Society.

According to conventional wisdom, a solar system starts out from a cloud of gas and dust. At the center of the prospective solar system, material clumps together, forming a young star. As the baby star grows, its gravitational force grows as well, and it attracts dust and gas from the surrounding cloud.

Accelerated by the growing gravitation of its star, the cloud spins faster and faster, and eventually flattens into what is called a protoplanetary disk. Once the bulk of the star's mass has formed, it is still fed material by its protoplanetary disk, but at a much lower rate.

"For a long time, it was assumed that the process of accreting material from the disk onto the star was enough to explain the thinning of the protoplanetary disk over time," Pascucci explained. "Our new results suggest that there is another process at work that takes material out of the disk."

Pascucci presented the findings at the 43rd Lunar and Planetary Science Conference in The Woodlands, Texas on March 19.

That process, called photo-evaporation, works by high-energy photons streaming out of the star and heating the dust and gas on the surface of the protoplanetary disk.

"The disk material that is very close to the star is very hot, but it is held in place by the star's strong gravity," Alexander said. "Further out in the disk where gravity is much weaker, the heated gas evaporates into space."

Even further out in the disk, the radiation emanating from the star is not intense enough to heat the gas sufficiently to cause much evaporation. But at a distance between 1 and 2 AU, the balancing effects of gravitation and heat clear a gap, the researchers found.

While studying protoplanetary disks, Pascucci found that gas on the surface of the disk was gravitationally unbound and leaving the disk system via photoevaporation, as Alexander had previously predicted. "These were the first observations proving that photoevaporation does occur in real systems," she said.

Encouraged by those findings, Alexander and Pascucci then used the ALICE High Performance Computing Facility at the University of Leicester to simulate protoplanetary discs undergoing accretion of material to the central star that took the effects of photo-evaporation into account.

"We don't yet know exactly where and when planets form around young stars, so our models considered developing solar systems with various combinations of giant planets at different locations and different stages in time," Alexander said.

The experiments revealed that just as observations of real solar systems have shown, giant planets migrate inward before they finally settle on a stable orbit around their star. This happens because as the star draws in material from the protoplanetary disk, the planets are dragged along, like a celebrity caught in a crowd of fans.

However, the researchers discovered that once a giant planet encounters a gap cleared by photo-evaporation, it stays put.

"The planets either stop right before or behind the gap, creating a pile-up," Pascucci said. "The local concentration of planets leaves behind regions elsewhere in the disk that are devoid of any planets. This uneven distribution is exactly what we see in many newly discovered solar systems."

Once surveys for discovering extrasolar planet systems such as the Kepler Space Telescope project become more sensitive to outer giant planets, Alexander and Pascucci expect to find more and more evidence for the pileup of giant planets around 1 AU.

Pascucci said. "As we discover more exoplanets, we will be able to test these predictions in detail and learn more about the conditions under which planets form."

The research was funded by the National Science Foundation and the UK's Science & Technology Facilities Council.

LINKS:

The scientific article, "Deserts and pile-ups in the distribution of exoplanets due to photoevaporative disc clearing," is available at

http://arxiv.org/abs/1202.5554

The University of Arizona Lunar and Planetary Laboratory:
http://www.lpl.arizona.edu
43rd Lunar and Planetary Science Conference, The Woodlands, Texas:
http://www.lpi.usra.edu/meetings/lpsc2012
CONTACTS:
Ilaria Pascucci
UA Lunar and Planetary Laboratory
520-626-5373
pascucci@lpl.arizona.edu
Richard Alexander
University of Leicester
richard.alexander@leicester.ac.uk
Daniel Stolte
University Communications
The University of Arizona
520-626-4402
stolte@email.arizona.edu

Daniel Stolte | University of Arizona
Further information:
http://www.arizona.edu

More articles from Earth Sciences:

nachricht Filling the gap: High-latitude volcanic eruptions also have global impact
20.11.2017 | Institute of Atmospheric Physics, Chinese Academy of Sciences

nachricht Antarctic landscape insights keep ice loss forecasts on the radar
20.11.2017 | University of Edinburgh

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Antarctic landscape insights keep ice loss forecasts on the radar

20.11.2017 | Earth Sciences

Filling the gap: High-latitude volcanic eruptions also have global impact

20.11.2017 | Earth Sciences

Water world

20.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>