Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Popular Solar System Orbits Result in 'Planet Pileups'

20.03.2012
In young solar systems emerging around baby stars, some orbits are more popular than others, resulting in "planet pileups" and "planet deserts."

Computer simulations have revealed a plausible explanation for a phenomenon that has puzzled astronomers: Rather than occupying orbits at regular distances from a star, giant gas planets similar to Jupiter and Saturn appear to prefer to occupy certain regions in mature solar systems while staying clear of others.

"Our results show that the final distribution of planets does not vary smoothly with distance from the star, but instead has clear Œdeserts' ­ deficits of planets ­ and Œpileups' of planets at particular locations,"

said Ilaria Pascucci, an assistant professor at the University of Arizona's Lunar and Planetary Laboratory.

"Our models offer a plausible explanation for the pileups of giant planets observed recently detected in exoplanet surveys," said Richard Alexander of the University of Leicester in the United Kingdom.

Alexander and Pascucci identified high-energy radiation from baby sun-like stars as the likely force that carves gaps in protoplanetary disks, the clouds of gas and dust that swirl around young stars and provide the raw materials for planets. The gaps then act as barricades, corralling planets into certain orbits.

The exact locations of those gaps depend on the planets' mass, but they generally occur in an area between 1 and 2 astronomical units from the star. One astronomical unit, or AU, marks the average distance from the Earth to the sun. The findings are to be published in the journal Monthly Notices of the Royal Astronomical Society.

According to conventional wisdom, a solar system starts out from a cloud of gas and dust. At the center of the prospective solar system, material clumps together, forming a young star. As the baby star grows, its gravitational force grows as well, and it attracts dust and gas from the surrounding cloud.

Accelerated by the growing gravitation of its star, the cloud spins faster and faster, and eventually flattens into what is called a protoplanetary disk. Once the bulk of the star's mass has formed, it is still fed material by its protoplanetary disk, but at a much lower rate.

"For a long time, it was assumed that the process of accreting material from the disk onto the star was enough to explain the thinning of the protoplanetary disk over time," Pascucci explained. "Our new results suggest that there is another process at work that takes material out of the disk."

Pascucci presented the findings at the 43rd Lunar and Planetary Science Conference in The Woodlands, Texas on March 19.

That process, called photo-evaporation, works by high-energy photons streaming out of the star and heating the dust and gas on the surface of the protoplanetary disk.

"The disk material that is very close to the star is very hot, but it is held in place by the star's strong gravity," Alexander said. "Further out in the disk where gravity is much weaker, the heated gas evaporates into space."

Even further out in the disk, the radiation emanating from the star is not intense enough to heat the gas sufficiently to cause much evaporation. But at a distance between 1 and 2 AU, the balancing effects of gravitation and heat clear a gap, the researchers found.

While studying protoplanetary disks, Pascucci found that gas on the surface of the disk was gravitationally unbound and leaving the disk system via photoevaporation, as Alexander had previously predicted. "These were the first observations proving that photoevaporation does occur in real systems," she said.

Encouraged by those findings, Alexander and Pascucci then used the ALICE High Performance Computing Facility at the University of Leicester to simulate protoplanetary discs undergoing accretion of material to the central star that took the effects of photo-evaporation into account.

"We don't yet know exactly where and when planets form around young stars, so our models considered developing solar systems with various combinations of giant planets at different locations and different stages in time," Alexander said.

The experiments revealed that just as observations of real solar systems have shown, giant planets migrate inward before they finally settle on a stable orbit around their star. This happens because as the star draws in material from the protoplanetary disk, the planets are dragged along, like a celebrity caught in a crowd of fans.

However, the researchers discovered that once a giant planet encounters a gap cleared by photo-evaporation, it stays put.

"The planets either stop right before or behind the gap, creating a pile-up," Pascucci said. "The local concentration of planets leaves behind regions elsewhere in the disk that are devoid of any planets. This uneven distribution is exactly what we see in many newly discovered solar systems."

Once surveys for discovering extrasolar planet systems such as the Kepler Space Telescope project become more sensitive to outer giant planets, Alexander and Pascucci expect to find more and more evidence for the pileup of giant planets around 1 AU.

Pascucci said. "As we discover more exoplanets, we will be able to test these predictions in detail and learn more about the conditions under which planets form."

The research was funded by the National Science Foundation and the UK's Science & Technology Facilities Council.

LINKS:

The scientific article, "Deserts and pile-ups in the distribution of exoplanets due to photoevaporative disc clearing," is available at

http://arxiv.org/abs/1202.5554

The University of Arizona Lunar and Planetary Laboratory:
http://www.lpl.arizona.edu
43rd Lunar and Planetary Science Conference, The Woodlands, Texas:
http://www.lpi.usra.edu/meetings/lpsc2012
CONTACTS:
Ilaria Pascucci
UA Lunar and Planetary Laboratory
520-626-5373
pascucci@lpl.arizona.edu
Richard Alexander
University of Leicester
richard.alexander@leicester.ac.uk
Daniel Stolte
University Communications
The University of Arizona
520-626-4402
stolte@email.arizona.edu

Daniel Stolte | University of Arizona
Further information:
http://www.arizona.edu

More articles from Earth Sciences:

nachricht Predicting unpredictability: Information theory offers new way to read ice cores
07.12.2016 | Santa Fe Institute

nachricht Sea ice hit record lows in November
07.12.2016 | University of Colorado at Boulder

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>