Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Plants put limit on ice ages

03.07.2009
When glaciers advanced over much of the Earth's surface during the last ice age, what kept the planet from freezing over entirely?

This has been a puzzle to climate scientists because leading models have indicated that over the past 24 million years geological conditions should have caused carbon dioxide levels in the atmosphere to plummet, possibly leading to runaway "icehouse" conditions. Now researchers writing in the July 2, 2009, Nature report on the missing piece of the puzzle – plants.

"Atmospheric CO2 concentrations have been remarkably stable over the last 20 or 25 million years despite other changes in the environment," says co-author Ken Caldeira of the Carnegie Institution's Department of Global Ecology. "We can look to land plants as the primary buffering agent that's held CO2 in such a narrow range during this time."

The research team, led by Mark Pagani of Yale University, found that the critical role of plants in the chemical breakdown and weathering of rocks and soil gave them a strong influence on carbon dioxide levels. It was a link that earlier studies had missed.

Over geologic time, large volumes of carbon dioxide have been released into the atmosphere by volcanoes. This would cause CO2 to build up in the atmosphere were it not for countervailing geologic processes of sedimentation, which bury carbon-containing minerals in the crust, sequestering it from the atmosphere. The overall rate of sedimentation is controlled by the upthrust of mountains and the erosion and chemical breakdown of their rocks. The rise of the Andes, Himalayas, Tibetan Plateau, and mountain ranges in western North America over the past 25 million years would have been expected to have cause faster weathering and erosion, and therefore a faster burial of carbon drawn from the atmosphere. But the stability of carbon dioxide levels indicate that this didn't happen. Why not?

This is where the plants come in. "The rates of weathering reactions are largely controlled by plants. Their roots secrete acids that dissolve minerals, they hold soils, and they increase the amount of carbon dissolved in groundwater," says Caldeira. "But when levels of carbon dioxide get too low, the plants basically suffocate and the weathering slows down. That means less sediment is eroded from the uplands and less carbon can be buried. It's a negative feedback on the system that has kept carbon dioxide levels from dropping too low."

Extremely low carbon dioxide levels would have reduced the atmosphere's ability to retain heat, putting the planet into a deep freeze. "So you could say that by limiting the drawdown of CO2 by chemical weathering and sedimentation, plants saved the planet from freezing over," says Caldeira.

Could plants save us from rising carbon dioxide from human emissions and harmful greenhouse warming? No, says Caldeira. "We are releasing CO2 to the atmosphere about 100 times faster than all the volcanoes in the world put together. While these weathering processes will eventually remove the CO2 we are adding to the atmosphere, they act too slowly to help us avoid dangerous climate change. It will take hundreds of thousands of years for these rock weathering processes to remove our fossil fuel emissions from the atmosphere."

The Carnegie Institution (www.CIW.edu) has been a pioneering force in basic scientific research since 1902. It is a private, nonprofit organization with six research departments throughout the U.S. Carnegie scientists are leaders in plant biology, developmental biology, astronomy, materials science, global ecology, and Earth and planetary science. The Department of Global Ecology, located in Stanford, California, was established in 2002 to help build the scientific foundations for a sustainable future. Its scientists conduct basic research on a wide range of large-scale environmental issues, including climate change, ocean acidification, biological invasions, and changes in biodiversity.

Ken Caldeira | EurekAlert!
Further information:
http://www.ciw.edu

More articles from Earth Sciences:

nachricht Less radiation in inner Van Allen belt than previously believed
21.03.2017 | DOE/Los Alamos National Laboratory

nachricht Mars volcano, Earth's dinosaurs went extinct about the same time
21.03.2017 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>