Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Could planting trees in the desert mitigate climate change?

As the world starts feeling the effects of increasing atmospheric carbon dioxide and consequent global temperature rise, researchers are looking for a Plan B to mitigate climate change.

A group of German scientists has now come up with an environmentally friendly method that they say could do just that. The technique, dubbed carbon farming, consists in planting trees in arid regions on a large scale to capture CO2. They publish their study today in Earth System Dynamics, a journal of the European Geosciences Union (EGU).

Processes involved in carbon farming. Technological and economic issues include the set up and operation of desalination plants and large-scale irrigation and their power supply, such as the production of bioenergy from the plantation. Land-surface-atmosphere processes, including heat release and CO2 absorption, also play a role in carbon farming. These modify the atmospheric boundary layer (ABL, the lowest part of the atmosphere) in such a way that may lead to the formation of clouds and precipitation. Becker et al. 2013

“Carbon farming addresses the root source of climate change: the emission of carbon dioxide by human activities,” says first-author Klaus Becker of the University of Hohenheim in Stuttgart.

“Nature does it better,” adds Becker’s colleague Volker Wulfmeyer, “if we understand and can make use of it in a sustainable manner.”

When it comes to sequestering carbon from the atmosphere, the team shows that _Jatropha curcas_ does it better. This small tree is very resistant to aridity so it can be planted in hot and dry land in soil unsuitable for food production. The plant does need water to grow though, so coastal areas where desalinated seawater can be made available are ideal.

“To our knowledge, this is the first time experts in irrigation, desalination, carbon sequestration, economics and atmospheric sciences have come together to analyse the feasibility of a large-scale plantation to capture carbon dioxide in a comprehensive manner. We did this by applying a series of computer models and using data from _Jatropha curcas_ plantations in Egypt, India and Madagascar,” says Wulfmeyer.

The new Earth System Dynamics study shows that one hectare of _Jatropha curcas_ could capture up to 25 tonnes of atmospheric carbon dioxide per year, over a 20 year period. A plantation taking up only about 3% of the Arabian Desert, for example, could absorb in a couple of decades all the CO2 produced by motor vehicles in Germany over the same period. With about one billion hectares suitable for carbon farming, the method could sequester a significant portion of the CO2 added to the atmosphere since the industrial revolution.

But there are more advantages. Carbon farming’s price tag ranges from 42 to 63 euros per tonne of CO2, making it competitive with other CO2-reduction techniques such as carbon capture and storage. Further, after a few years, the plants would produce bioenergy (in the form of tree trimmings) to support the power production required for the desalination and irrigation systems.

“From our point of view, afforestation as a geoengineering option for carbon sequestration is the most efficient and environmentally safe approach for climate change mitigation. Vegetation has played a key role in the global carbon cycle for millions of years, in contrast to many technical and very expensive geoengineering techniques,” explains Becker.

The main limitations to implementing this method are lack of funding and little knowledge of the benefits large-scale plantations could have in the regional climate, which can include increase of cloud coverage and rainfall. The new Earth System Dynamics paper presents results of simulations looking into these aspects, but there is still a lack of experimental data on the effects of greening arid regions. Also, potential detrimental effects such as the accumulation of salt in desert soils need to be evaluated carefully.

The team hopes the new research will get enough people informed about carbon farming to establish a pilot project. “We strongly recommend more emphasis is put on this technology – at both small and large scales – and that more research is done to investigate its benefits in comparison to other geoengineering approaches,” concludes Wulfmeyer.

*More information*
This research is presented in the paper ‘Carbon farming in hot, dry coastal areas: an option for climate change mitigation’ to appear in the EGU open access journal Earth System Dynamics on 31 July 2013. Please mention the publication if reporting on this story and, if reporting online, include a link to the paper or to the journal website (

The peer-reviewed scientific article is available online, from the publication date onwards, at To obtain a copy of the paper before the publication date, please email Bárbara Ferreira at

The discussion paper (not peer-reviewed) and reviewers’ comments are available at

The team is composed of K. Becker (Institute for Animal Production in the Tropics and Subtropics, University of Hohenheim, Stuttgart, Germany), V. Wulfmeyer (Institute of Physics and Meteorology, University of Hohenheim), T. Berger (Institute for Agricultural Economics and Social Sciences in the Tropics and Subtropics, University of Hohenheim), J. Gebel (S.T.E.P. Consulting GmbH, Aachen, Germany) and W. Münch (EnBW Energie Baden-Württemberg A.G., Karlsruhe, Germany).

The European Geosciences Union (EGU) is Europe’s premier geosciences union, dedicated to the pursuit of excellence in the Earth, planetary, and space sciences for the benefit of humanity, worldwide. It is a non-profit interdisciplinary learned association of scientists founded in 2002. The EGU has a current portfolio of 15 diverse scientific journals, which use an innovative open access format, and organises a number of topical meetings, and education and outreach activities. Its annual General Assembly is the largest and most prominent European geosciences event, attracting over 10,000 scientists from all over the world. The meeting’s sessions cover a wide range of topics, including volcanology, planetary exploration, the Earth’s internal structure and atmosphere, climate, energy, and resources. The 2014 EGU General Assembly is taking place is Vienna, Austria from 27 April to 2 May 2014. For information regarding the press centre at the meeting and media registration, please check closer to the time of the conference.

If you wish to receive our press releases via email, please use the Press Release Subscription Form at Subscribed journalists and other members of the media receive EGU press releases under embargo (if applicable) 24 hours in advance of public dissemination.

Volker Wulfmeyer
Institute of Physics and Meteorology
University of Hohenheim
Stuttgart, Germany
(Currently at the Cooperative Institute for Research in Environmental Sciences in Boulder, Colorado, USA)
Phone: +1-303-4976560
Klaus Becker
Atmosphere Protect GmbH
Göttingen, Germany
Phone: +49-551-47051
Mobile: +49-151-1273-6368
Thomas Berger
Institute of Agricultural Economics and Social Sciences in the Tropics and Subtropics
University of Hohenheim
Stuttgart, Germany
Phone: +49-711-4592-4116
Bárbara Ferreira
EGU Media and Communications Manager
Munich, Germany
Tel: +49-89-2180-6703
Weitere Informationen: (Earth System Dynamics)

(Press release on the EGU website)

Dr. Bárbara Ferreira | idw
Further information:

More articles from Earth Sciences:

nachricht New technologies and computing power to help strengthen population data
22.03.2018 | University of Southampton

nachricht New interactive map shows climate change everywhere in world
22.03.2018 | University of Cincinnati

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Modular safety concept increases flexibility in plant conversion

22.03.2018 | Trade Fair News

New interactive map shows climate change everywhere in world

22.03.2018 | Earth Sciences

New technologies and computing power to help strengthen population data

22.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>