Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Planet Mercury a result of early hit-and-run collisions

09.07.2014

Planet Mercury's unusual metal-rich composition has been a longstanding puzzle in planetary science. According to a study published online in Nature Geoscience July 6, Mercury and other unusually metal-rich objects in the solar system may be relics left behind by collisions in the early solar system that built the other planets.

The origin of planet Mercury has been a difficult question in planetary science because its composition is very different from that of the other terrestrial planets and the moon. This small, innermost planet has more than twice the fraction of metallic iron of any other terrestrial planet. Its iron core makes up about 65 percent of Mercury's total mass; Earth's core, by comparison, is just 32 percent of its mass.


New simulations show that Mercury and other unusually metal-rich objects in the solar system may be relics left behind by hit-and-run collisions in the early solar system.

Credit: NASA/JPL/Caltech

How do we get Venus, Earth and Mars to be mostly "chondritic" (having a more-or-less Earth-like bulk composition) while Mercury is such an anomaly? For Arizona State University professor Erik Asphaug, understanding how such a planet accumulated from the dust, ice and gas in the early solar nebula is a key science question.

There have been a number of failed hypotheses for Mercury's formation. None of them until now has been able to explain how Mercury lost its mantle while retaining significant levels of volatiles (easily vaporized elements or compounds, such as water, lead and sulfur). Mercury has substantially more volatiles than the moon does, leading scientists to think its formation could have had nothing to do with a giant impact ripping off the mantle, which has been a common popular explanation.

To explain the mystery of Mercury's metal-rich composition, ASU's Asphaug and Andreas Reufer of the University of Bern have developed a new hypothesis involving hit-and-run collisions, where proto-Mercury loses half its mantle in a grazing blow into a larger planet (proto-Venus or proto-Earth).

One or more hit-and-run collisions could have potentially stripped away proto-Mercury's mantle without an intense shock, leaving behind a mostly-iron body and satisfying a number of the major puzzles of planetary formation – including the retention of volatiles – in a process that can also explain the absence of shock features in many of the mantle-stripped meteorites.

Asphaug and Reufer have developed a statistical scenario for how planets merge and grow based on the common notion that Mars and Mercury are the last two relics of an original population of maybe 20 bodies that mostly accreted to form Venus and Earth. These last two planets lucked out.

"How did they luck out? Mars, by missing out on most of the action – not colliding into any larger body since its formation – and Mercury, by hitting the larger planets in a glancing blow each time, failing to accrete," explains Asphaug, who is a professor in ASU's School of Earth and Space Exploration. "It's like landing heads two or three times in a row – lucky, but not crazy lucky. In fact, about one in 10 lucky."

By and large, dynamical modelers have rejected the notion that hit-and-run survivors can be important because they will eventually be accreted by the same larger body they originally ran into. Their argument is that it is very unlikely for a hit-and-run relic to survive this final accretion onto the target body.

"The surprising result we have shown is that hit-and-run relics not only can exist in rare cases, but that survivors of repeated hit-and-run incidents can dominate the surviving population. That is, the average unaccreted body will have been subject to more than one hit-and-run collision," explains Asphaug. "We propose one or two of these hit-and-run collisions can explain Mercury's massive metallic core and very thin rocky mantle."

According to Reufer, who performed the computer modeling for the study, "Giant collisions put the final touches on our planets. Only recently have we started to understand how profound and deep those final touches can be.

"The implication of the dynamical scenario explains, at long last, where the 'missing mantle' of Mercury is – it's on Venus or the Earth, the hit-and-run targets that won the sweep-up," says Asphaug.

Disrupted formation

The duo's modelling has revealed a fundamental problem with an idea implicit to modern theories of planet formation: that protoplanets grow efficiently into ever larger bodies, merging whenever they collide.

Instead, disruption occurs even while the protoplanets are growing.

"Protoplanets do merge and grow, overall, because otherwise there would not be planets," says Asphaug. "But planet formation is actually a very messy, very lossy process, and when you take that into account, it's not at all surprising that the 'scraps,' like Mercury and Mars, and the asteroids are so diverse."

These simulations are of great relevance to meteoritics, which, just like Mercury's missing mantle, faces questions like: Where's all the stripped mantle rock that got removed from these early core-forming planetesimals? Where are the olivine meteorites that correspond to the dozens or hundreds of iron meteorite parent bodies?

"It's not missing – it's inside the mantles of the planets, ultimately," explains Asphaug. "It got gobbled up by the larger growing planetary bodies in every hit-and-run series of encounters."

Nikki Cassis | Eurek Alert!

Further reports about: Arizona Earth Mars Mercury Planet collisions mantle metallic meteorites shock terrestrial

More articles from Earth Sciences:

nachricht ChemCam findings hint at oxygen-rich past on Mars
28.06.2016 | DOE/Los Alamos National Laboratory

nachricht Previously unknown global ecological disaster discovered
28.06.2016 | Universität Zürich

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Flexible OLED applications arrive

R2D2, a joint project to analyze and development high-TRL processes and technologies for manufacture of flexible organic light-emitting diodes (OLEDs) funded by the German Federal Ministry of Education and Research (BMBF) has been successfully completed.

In contrast to point light sources like LEDs made of inorganic semiconductor crystals, organic light-emitting diodes (OLEDs) are light-emitting surfaces. Their...

Im Focus: Unexpected flexibility found in odorant molecules

High resolution rotational spectroscopy reveals an unprecedented number of conformations of an odorant molecule – a new world record!

In a recent publication in the journal Physical Chemistry Chemical Physics, researchers from the Max Planck Institute for the Structure and Dynamics of Matter...

Im Focus: 3-D printing produces cartilage from strands of bioink

Strands of cow cartilage substitute for ink in a 3D bioprinting process that may one day create cartilage patches for worn out joints, according to a team of engineers. "Our goal is to create tissue that can be used to replace large amounts of worn out tissue or design patches," said Ibrahim T. Ozbolat, associate professor of engineering science and mechanics. "Those who have osteoarthritis in their joints suffer a lot. We need a new alternative treatment for this."

Cartilage is a good tissue to target for scale-up bioprinting because it is made up of only one cell type and has no blood vessels within the tissue. It is...

Im Focus: First experimental quantum simulation of particle physics phenomena

Physicists in Innsbruck have realized the first quantum simulation of lattice gauge theories, building a bridge between high-energy theory and atomic physics. In the journal Nature, Rainer Blatt‘s and Peter Zoller’s research teams describe how they simulated the creation of elementary particle pairs out of the vacuum by using a quantum computer.

Elementary particles are the fundamental buildings blocks of matter, and their properties are described by the Standard Model of particle physics. The...

Im Focus: Is There Life On Mars?

Survivalist back from Space - 18 months on the outer skin of the ISS

A year and a half on the outer wall of the International Space Station ISS in altitude of 400 kilometers is a real challenge. Whether a primordial bacterium...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Conference ‘GEO BON’ Wants to Close Knowledge Gaps in Global Biodiversity

28.06.2016 | Event News

ERES 2016: The largest conference in the European real estate industry

09.06.2016 | Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

 
Latest News

Rotating ring of complex organic molecules discovered around newborn star

28.06.2016 | Physics and Astronomy

Unidentified spectra detector

28.06.2016 | Life Sciences

Clandestine black hole may represent new population

28.06.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>