Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Planet Mercury a result of early hit-and-run collisions

09.07.2014

Planet Mercury's unusual metal-rich composition has been a longstanding puzzle in planetary science. According to a study published online in Nature Geoscience July 6, Mercury and other unusually metal-rich objects in the solar system may be relics left behind by collisions in the early solar system that built the other planets.

The origin of planet Mercury has been a difficult question in planetary science because its composition is very different from that of the other terrestrial planets and the moon. This small, innermost planet has more than twice the fraction of metallic iron of any other terrestrial planet. Its iron core makes up about 65 percent of Mercury's total mass; Earth's core, by comparison, is just 32 percent of its mass.


New simulations show that Mercury and other unusually metal-rich objects in the solar system may be relics left behind by hit-and-run collisions in the early solar system.

Credit: NASA/JPL/Caltech

How do we get Venus, Earth and Mars to be mostly "chondritic" (having a more-or-less Earth-like bulk composition) while Mercury is such an anomaly? For Arizona State University professor Erik Asphaug, understanding how such a planet accumulated from the dust, ice and gas in the early solar nebula is a key science question.

There have been a number of failed hypotheses for Mercury's formation. None of them until now has been able to explain how Mercury lost its mantle while retaining significant levels of volatiles (easily vaporized elements or compounds, such as water, lead and sulfur). Mercury has substantially more volatiles than the moon does, leading scientists to think its formation could have had nothing to do with a giant impact ripping off the mantle, which has been a common popular explanation.

To explain the mystery of Mercury's metal-rich composition, ASU's Asphaug and Andreas Reufer of the University of Bern have developed a new hypothesis involving hit-and-run collisions, where proto-Mercury loses half its mantle in a grazing blow into a larger planet (proto-Venus or proto-Earth).

One or more hit-and-run collisions could have potentially stripped away proto-Mercury's mantle without an intense shock, leaving behind a mostly-iron body and satisfying a number of the major puzzles of planetary formation – including the retention of volatiles – in a process that can also explain the absence of shock features in many of the mantle-stripped meteorites.

Asphaug and Reufer have developed a statistical scenario for how planets merge and grow based on the common notion that Mars and Mercury are the last two relics of an original population of maybe 20 bodies that mostly accreted to form Venus and Earth. These last two planets lucked out.

"How did they luck out? Mars, by missing out on most of the action – not colliding into any larger body since its formation – and Mercury, by hitting the larger planets in a glancing blow each time, failing to accrete," explains Asphaug, who is a professor in ASU's School of Earth and Space Exploration. "It's like landing heads two or three times in a row – lucky, but not crazy lucky. In fact, about one in 10 lucky."

By and large, dynamical modelers have rejected the notion that hit-and-run survivors can be important because they will eventually be accreted by the same larger body they originally ran into. Their argument is that it is very unlikely for a hit-and-run relic to survive this final accretion onto the target body.

"The surprising result we have shown is that hit-and-run relics not only can exist in rare cases, but that survivors of repeated hit-and-run incidents can dominate the surviving population. That is, the average unaccreted body will have been subject to more than one hit-and-run collision," explains Asphaug. "We propose one or two of these hit-and-run collisions can explain Mercury's massive metallic core and very thin rocky mantle."

According to Reufer, who performed the computer modeling for the study, "Giant collisions put the final touches on our planets. Only recently have we started to understand how profound and deep those final touches can be.

"The implication of the dynamical scenario explains, at long last, where the 'missing mantle' of Mercury is – it's on Venus or the Earth, the hit-and-run targets that won the sweep-up," says Asphaug.

Disrupted formation

The duo's modelling has revealed a fundamental problem with an idea implicit to modern theories of planet formation: that protoplanets grow efficiently into ever larger bodies, merging whenever they collide.

Instead, disruption occurs even while the protoplanets are growing.

"Protoplanets do merge and grow, overall, because otherwise there would not be planets," says Asphaug. "But planet formation is actually a very messy, very lossy process, and when you take that into account, it's not at all surprising that the 'scraps,' like Mercury and Mars, and the asteroids are so diverse."

These simulations are of great relevance to meteoritics, which, just like Mercury's missing mantle, faces questions like: Where's all the stripped mantle rock that got removed from these early core-forming planetesimals? Where are the olivine meteorites that correspond to the dozens or hundreds of iron meteorite parent bodies?

"It's not missing – it's inside the mantles of the planets, ultimately," explains Asphaug. "It got gobbled up by the larger growing planetary bodies in every hit-and-run series of encounters."

Nikki Cassis | Eurek Alert!

Further reports about: Arizona Earth Mars Mercury Planet collisions mantle metallic meteorites shock terrestrial

More articles from Earth Sciences:

nachricht NOAA study provides detailed projections of coral bleaching
02.04.2015 | NOAA Headquarters

nachricht Complete camel skeleton unearthed in Austria
02.04.2015 | Veterinärmedizinische Universität Wien

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lizard activity levels can help scientists predict environmental change

Research study provides new tools to assess warming temperatures

Spring is here and ectotherms, or animals dependent on external sources to raise their body temperature, are becoming more active. Recent studies have shown...

Im Focus: Hannover Messe 2015: Saving energy with smart façades

Glass-fronted office buildings are some of the biggest energy consumers, and regulating their temperature is a big job. Now a façade element developed by Fraunhofer researchers and designers for glass fronts is to reduce energy consumption by harnessing solar thermal energy. A demonstrator version will be on display at Hannover Messe.

In Germany, buildings account for almost 40 percent of all energy usage. Heating, cooling and ventilating homes, offices and public spaces is expensive – and...

Im Focus: Nonoxide ceramics open up new perspectives for the chemical and plant engineering

Outstanding chemical, thermal and tribological properties predestine silicon carbide for the production of ceramic components of high volume. A novel method now overcomes the procedural and technical limitations of conventional design methods for the production of components with large differences in wall thickness and demanding undercuts.

Extremely hard as diamond, shrinking-free manufacturing, resistance to chemicals, wear and temperatures up to 1300 °C: Silicon carbide (SiSiC) bundles all...

Im Focus: Experiment Provides the Best Look Yet at 'Warm Dense Matter' at Cores of Giant Planets

In an experiment at the Department of Energy's SLAC National Accelerator Laboratory, scientists precisely measured the temperature and structure of aluminum as...

Im Focus: Energy-autonomous and wireless monitoring protects marine gearboxes

The IPH presents a solution at HANNOVER MESSE 2015 to make ship traffic more reliable while decreasing the maintenance costs at the same time. In cooperation with project partners, the research institute from Hannover, Germany, has developed a sensor system which continuously monitors the condition of the marine gearbox, thus preventing breakdowns. Special feature: the monitoring system works wirelessly and energy-autonomously. The required electrical power is generated where it is needed – directly at the sensor.

As well as cars need to be certified regularly (in Germany by the TÜV – Technical Inspection Association), ships need to be inspected – if the powertrain stops...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Conference On Regenerative Medicine 2015: Registration And Abstract Submission Now Open

25.03.2015 | Event News

University presidents from all over the world meet in Hamburg

19.03.2015 | Event News

10. CeBiTec Symposium zum Big Data-Problem

17.03.2015 | Event News

 
Latest News

Researchers improve efficiency of human walking

02.04.2015 | Health and Medicine

NOAA study provides detailed projections of coral bleaching

02.04.2015 | Earth Sciences

Current residential development research is a poor foundation for sustainable development

02.04.2015 | Ecology, The Environment and Conservation

VideoLinks
B2B-VideoLinks
More VideoLinks >>>