Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Peruvian glacial retreats linked to European events of Little Ice Age

28.09.2009
A new study that reports precise ages for glacial moraines in southern Peru links climate swings in the tropics to those of Europe and North America during the Little Ice Age approximately 150 to 350 years ago.

The study, published this week in the journal Science, "brings us one step closer to understanding global-scale patterns of glacier activity and climate during the Little Ice Age," says lead author Joe Licciardi, associate professor of Earth sciences at the University of New Hampshire. "The more we know about our recent climate past, the better we can understand our modern and future climate."

The study, "Holocene glacier fluctuations in the Peruvian Andes indicate northern climate linkages," was borne of a convergence of a methodological breakthrough in geochronological techniques and Licciardi's chance encounter with well-preserved glacial moraines in Peru.

On vacation in 2003, Licciardi was hiking near the well-known Inca Trail when he noticed massive, well-preserved glacial moraines – ridges of dirt and rocks left behind when glaciers recede -- along the way, about 25 kilometers from the ruins of Machu Picchu. "They very clearly mark the outlines of formerly expanded valley glaciers at various distinct times in the recent past," he says. But Licciardi, who had no geologic tools with him at the time, did not take any samples.

Two years later, coauthor David Lund, assistant professor of geology at the University of Michigan and a friend of Licciardi's from graduate school, was in the same region and offered to chisel off some samples of the salt-and-pepper colored granitic rock. "Dave also recognized the potential of this site and shared my enthusiasm for initiating a study," says Licciardi. "That was the catalyst for turning our ideas into an actual project." Licciardi returned in 2006 to the slopes of Nevado Salcantay, a 20,000-foot-plus peak that is the highest in the Cordillera Vilcabamba range. Over the next two years, he and his graduate student Jean Taggart, also a coauthor, collected more rock samples from the moraines.

The researchers analyzed the samples using a surface exposure dating technique -- measuring the tiny amounts of the chemical isotope beryllium-10 that is formed as cosmic rays bombard exposed surfaces -- to place very precise dates on these relatively young glacial fluctuations. Licciardi and Taggart, who received a master's degree from UNH last month, worked with coauthor Joerg Schaefer, a geochemist at Columbia University's Lamont-Doherty Earth Observatory, to produce some of the youngest ages ever obtained from the beryllium isotope dating method.

"The ability to measure such young and precise ages with this method provides us with an exciting new way to establish the timing of recent glacier fluctuations in places far afield from where we have historical records," says Licciardi. Because the Little Ice Age – from about 1300 AD to 1860 AD -- coincides with historical accounts and climate observations in Europe and North America, the event is well documented in the Northern Hemisphere. In remote and sparsely inhabited areas like the Peruvian Andes, however, chronologies of Little Ice Age glacial events are very scarce.

A key finding of the study is that while glaciers in southern Peru moved at similar times as glaciers in Europe, the Peruvian record differs from the timing of glacier fluctuations in New Zealand's Southern Alps during the last millennium, as reported in another recent study in Science led by Schaefer.

"This finding helps identify interhemispheric linkages between glacial signals around the world. It increases our understanding of what climate was like during the Little Ice Age, which will in turn help us understand climate drivers," says Taggart.

"If the current dramatic warming projections are correct, we have to face the possibility that the glaciers may soon disappear," adds Schaefer.

Licciardi and his colleagues will continue working in Peru toward a more complete understanding of glacial expansion during the Little Ice Age – and their subsequent retreat. "Our new results point to likely climate processes that can explain why these glaciers expanded and retreated when they did, but there are still many open questions," he says. "For example, what's the relative importance of temperature change versus precipitation change on the health of these glaciers?" The research team plans to explore this question using coupled climate-glacier models that evaluate the sensitivity of glaciers in southern Peru to the two main factors that drive glacier expansion – cold temperatures and abundant snowfall.

Funding was provided by the U.S. National Science Foundation, UNH, Sigma Xi, and the Geological Society of America.

The University of New Hampshire, founded in 1866, is a world-class public research university with the feel of a New England liberal arts college. A land, sea, and space-grant university, UNH is the state's flagship public institution, enrolling 11,800 undergraduate and 2,400 graduate students.

Beth Potier | EurekAlert!
Further information:
http://www.unh.edu

More articles from Earth Sciences:

nachricht Multi-year submarine-canyon study challenges textbook theories about turbidity currents
12.12.2017 | Monterey Bay Aquarium Research Institute

nachricht How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas
11.12.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>