Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Peruvian glacial retreats linked to European events of Little Ice Age

28.09.2009
A new study that reports precise ages for glacial moraines in southern Peru links climate swings in the tropics to those of Europe and North America during the Little Ice Age approximately 150 to 350 years ago.

The study, published this week in the journal Science, "brings us one step closer to understanding global-scale patterns of glacier activity and climate during the Little Ice Age," says lead author Joe Licciardi, associate professor of Earth sciences at the University of New Hampshire. "The more we know about our recent climate past, the better we can understand our modern and future climate."

The study, "Holocene glacier fluctuations in the Peruvian Andes indicate northern climate linkages," was borne of a convergence of a methodological breakthrough in geochronological techniques and Licciardi's chance encounter with well-preserved glacial moraines in Peru.

On vacation in 2003, Licciardi was hiking near the well-known Inca Trail when he noticed massive, well-preserved glacial moraines – ridges of dirt and rocks left behind when glaciers recede -- along the way, about 25 kilometers from the ruins of Machu Picchu. "They very clearly mark the outlines of formerly expanded valley glaciers at various distinct times in the recent past," he says. But Licciardi, who had no geologic tools with him at the time, did not take any samples.

Two years later, coauthor David Lund, assistant professor of geology at the University of Michigan and a friend of Licciardi's from graduate school, was in the same region and offered to chisel off some samples of the salt-and-pepper colored granitic rock. "Dave also recognized the potential of this site and shared my enthusiasm for initiating a study," says Licciardi. "That was the catalyst for turning our ideas into an actual project." Licciardi returned in 2006 to the slopes of Nevado Salcantay, a 20,000-foot-plus peak that is the highest in the Cordillera Vilcabamba range. Over the next two years, he and his graduate student Jean Taggart, also a coauthor, collected more rock samples from the moraines.

The researchers analyzed the samples using a surface exposure dating technique -- measuring the tiny amounts of the chemical isotope beryllium-10 that is formed as cosmic rays bombard exposed surfaces -- to place very precise dates on these relatively young glacial fluctuations. Licciardi and Taggart, who received a master's degree from UNH last month, worked with coauthor Joerg Schaefer, a geochemist at Columbia University's Lamont-Doherty Earth Observatory, to produce some of the youngest ages ever obtained from the beryllium isotope dating method.

"The ability to measure such young and precise ages with this method provides us with an exciting new way to establish the timing of recent glacier fluctuations in places far afield from where we have historical records," says Licciardi. Because the Little Ice Age – from about 1300 AD to 1860 AD -- coincides with historical accounts and climate observations in Europe and North America, the event is well documented in the Northern Hemisphere. In remote and sparsely inhabited areas like the Peruvian Andes, however, chronologies of Little Ice Age glacial events are very scarce.

A key finding of the study is that while glaciers in southern Peru moved at similar times as glaciers in Europe, the Peruvian record differs from the timing of glacier fluctuations in New Zealand's Southern Alps during the last millennium, as reported in another recent study in Science led by Schaefer.

"This finding helps identify interhemispheric linkages between glacial signals around the world. It increases our understanding of what climate was like during the Little Ice Age, which will in turn help us understand climate drivers," says Taggart.

"If the current dramatic warming projections are correct, we have to face the possibility that the glaciers may soon disappear," adds Schaefer.

Licciardi and his colleagues will continue working in Peru toward a more complete understanding of glacial expansion during the Little Ice Age – and their subsequent retreat. "Our new results point to likely climate processes that can explain why these glaciers expanded and retreated when they did, but there are still many open questions," he says. "For example, what's the relative importance of temperature change versus precipitation change on the health of these glaciers?" The research team plans to explore this question using coupled climate-glacier models that evaluate the sensitivity of glaciers in southern Peru to the two main factors that drive glacier expansion – cold temperatures and abundant snowfall.

Funding was provided by the U.S. National Science Foundation, UNH, Sigma Xi, and the Geological Society of America.

The University of New Hampshire, founded in 1866, is a world-class public research university with the feel of a New England liberal arts college. A land, sea, and space-grant university, UNH is the state's flagship public institution, enrolling 11,800 undergraduate and 2,400 graduate students.

Beth Potier | EurekAlert!
Further information:
http://www.unh.edu

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>