Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Permafrost Thawing Could Accelerate Global Warming

09.04.2014

Decomposing plants and soil could contribute to an increase in greenhouse gases

A team of researchers lead by Florida State University have found new evidence that permafrost thawing is releasing large quantities of greenhouse gases into the atmosphere via plants, which could accelerate warming trends.

The research is featured in the newest edition of the Proceedings of the National Academy of Sciences.

“We’ve known for a while now that permafrost is thawing,” said Suzanne Hodgkins, the lead author on the paper and a doctoral student in chemical oceanography at Florida State. “But what we’ve found is that the associated changes in plant community composition in the polar regions could lead to way more carbon being released into the atmosphere as methane.”

Permafrost is soil that is frozen year round and is typically located in polar regions. As the world has gotten slightly warmer, that permafrost is thawing and decomposing, which is producing increased amounts of methane.

Relative to carbon dioxide, methane has a disproportionately large global warming potential. Methane is 33 times more effective at warming the Earth on a mass basis and a century time scale relative to carbon dioxide.

As the plants break down, they are releasing carbon into the atmosphere. And if the permafrost melts entirely, there would be five times the amount of carbon in the atmosphere than there is now, said Jeff Chanton, the John Widmer Winchester Professor of Oceanography at Florida State.

“The world is getting warmer, and the additional release of gas would only add to our problems,” he said.

Chanton and Hodgkins’ work, “Changes in peat chemistry associated with permafrost thaw increase greenhouse gas production,” was funded by a three-year, $400,000 Department of Energy grant. They traveled to Sweden multiple times to collect soil samples for the study.

The research is a multicontinent effort with researchers from North America, Europe and Australia all contributing to the work.

Kathleen Haughney | newswise

Further reports about: Earth Energy Methane Oceanography Permafrost Warming atmosphere dioxide gases greenhouse

More articles from Earth Sciences:

nachricht Researchers find higher than expected carbon emissions from inland waterways
25.05.2016 | Washington State University

nachricht Rutgers scientists help create world's largest coral gene database
24.05.2016 | Rutgers University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Worldwide Success of Tyrolean Wastewater Treatment Technology

A biological and energy-efficient process, developed and patented by the University of Innsbruck, converts nitrogen compounds in wastewater treatment facilities into harmless atmospheric nitrogen gas. This innovative technology is now being refined and marketed jointly with the United States’ DC Water and Sewer Authority (DC Water). The largest DEMON®-system in a wastewater treatment plant is currently being built in Washington, DC.

The DEMON®-system was developed and patented by the University of Innsbruck 11 years ago. Today this successful technology has been implemented in about 70...

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

11 million Euros for research into magnetic field sensors for medical diagnostics

27.05.2016 | Awards Funding

Fungi – a promising source of chemical diversity

27.05.2016 | Life Sciences

New Model of T Cell Activation

27.05.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>