Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Permafrost Thaw Exacerbates Climate Change

24.03.2014

The climate is warming in the arctic at twice the rate of the rest of the globe creating a longer growing season and increased plant growth, which captures atmospheric carbon, and thawing permafrost, which releases carbon into the atmosphere.

Woods Hole Research Center (WHRC) Assistant Scientist Sue Natali and colleagues engineered first-of-a-kind warming experiments in the field to determine net gains or losses in carbon emissions. The study entitled “Permafrost degradation stimulates carbon loss from experimentally warmed tundra,” published in the journal Ecology found that growing season gains do not offset carbon emissions from permafrost thaw.


Summer warming experiment


Winter warming experiment

According to Dr. Natali, “Our results show that while permafrost degradation increased carbon uptake during the growing season, in line with decadal trends of ‘greening’ tundra, warming and permafrost thaw also enhanced winter respiration, which doubled annual carbon losses.”

Permafrost contains three to seven times the amount of carbon sequestered in tropical forests. The warming climate threatens to thaw permafrost, which will result in the release of carbon dioxide and methane into the atmosphere creating feedbacks to climate change – more warming and greater permafrost thaw. Prior to this study, “the understanding of permafrost feedbacks to climate change had been limited by a lack of data examining warming effects on both vegetation and permafrost carbon simultaneously,” said Dr. Natali.

This study measured CO2 emissions from permafrost thaw and its impact on the carbon balance on an ecosystem level. According to Dr. Natali, “There is 100 times more carbon stored belowground than aboveground in the arctic, so observed changes in plant productivity are only a very small component of the story. Given the amount of carbon stored belowground in the arctic, it is very unlikely that plant growth can ever fully offset C losses from permafrost thaw.”

The three year long Carbon in Permafrost Experimental Heating Research (CiPEHR) project warmed air and soil and thawed permafrost using two warming experiments. The “winter warming” treatment consisted of snow packs, which functioned like down comforters insulating the ground during the winter until the snow was removed at the start of the growing season. The “summer warming” treatment consisted of open-topped greenhouses that warmed the air during the summer. The team measured warming effects on CO2 uptake by plants and release by plants and microbes.

Scientists estimate that within the next century permafrost will have declined 30% to 70% and there is limited accounting of how much carbon is stored in these frozen soils or the rate at which it will be released. For Dr. Natali:

“The only way we can accurately project future climate is to understand the responses of both plants and microbes to a warming climate. This study was the first to simulate whole ecosystem warming in the arctic, including permafrost degradation, similar to what is projected to happen as a result of climate change. There is a strong potential for significant global carbon emissions if rates calculated here become typical for permafrost ecosystems in a warmer world.”

Link to abstract »

WHRC is an independent research institute where scientists collaborate to examine the drivers and impacts of climate change and identify opportunities for conservation around the globe.

Contact: Eunice Youmans, Director of External Affairs 508-444-1509
Email Eunice Youmans

Eunice Youmans | EurekAlert!
Further information:
http://whrc.org/news/pressroom/PR-2014-Natali-Permafrost-Ecology.html

Further reports about: CO2 Change Climate Ecology Permafrost degradation ecosystem microbes

More articles from Earth Sciences:

nachricht Clouds and climate in the pre-industrial age
30.05.2016 | Goethe-Universität Frankfurt am Main

nachricht Researchers find higher than expected carbon emissions from inland waterways
25.05.2016 | Washington State University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Worldwide Success of Tyrolean Wastewater Treatment Technology

A biological and energy-efficient process, developed and patented by the University of Innsbruck, converts nitrogen compounds in wastewater treatment facilities into harmless atmospheric nitrogen gas. This innovative technology is now being refined and marketed jointly with the United States’ DC Water and Sewer Authority (DC Water). The largest DEMON®-system in a wastewater treatment plant is currently being built in Washington, DC.

The DEMON®-system was developed and patented by the University of Innsbruck 11 years ago. Today this successful technology has been implemented in about 70...

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

3-D model reveals how invisible waves move materials within aquatic ecosystems

30.05.2016 | Materials Sciences

Spin glass physics with trapped ions

30.05.2016 | Materials Sciences

Optatec 2016: Robust glass optical elements for LED lighting

30.05.2016 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>