Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Permafrost Thaw Exacerbates Climate Change

24.03.2014

The climate is warming in the arctic at twice the rate of the rest of the globe creating a longer growing season and increased plant growth, which captures atmospheric carbon, and thawing permafrost, which releases carbon into the atmosphere.

Woods Hole Research Center (WHRC) Assistant Scientist Sue Natali and colleagues engineered first-of-a-kind warming experiments in the field to determine net gains or losses in carbon emissions. The study entitled “Permafrost degradation stimulates carbon loss from experimentally warmed tundra,” published in the journal Ecology found that growing season gains do not offset carbon emissions from permafrost thaw.


Summer warming experiment


Winter warming experiment

According to Dr. Natali, “Our results show that while permafrost degradation increased carbon uptake during the growing season, in line with decadal trends of ‘greening’ tundra, warming and permafrost thaw also enhanced winter respiration, which doubled annual carbon losses.”

Permafrost contains three to seven times the amount of carbon sequestered in tropical forests. The warming climate threatens to thaw permafrost, which will result in the release of carbon dioxide and methane into the atmosphere creating feedbacks to climate change – more warming and greater permafrost thaw. Prior to this study, “the understanding of permafrost feedbacks to climate change had been limited by a lack of data examining warming effects on both vegetation and permafrost carbon simultaneously,” said Dr. Natali.

This study measured CO2 emissions from permafrost thaw and its impact on the carbon balance on an ecosystem level. According to Dr. Natali, “There is 100 times more carbon stored belowground than aboveground in the arctic, so observed changes in plant productivity are only a very small component of the story. Given the amount of carbon stored belowground in the arctic, it is very unlikely that plant growth can ever fully offset C losses from permafrost thaw.”

The three year long Carbon in Permafrost Experimental Heating Research (CiPEHR) project warmed air and soil and thawed permafrost using two warming experiments. The “winter warming” treatment consisted of snow packs, which functioned like down comforters insulating the ground during the winter until the snow was removed at the start of the growing season. The “summer warming” treatment consisted of open-topped greenhouses that warmed the air during the summer. The team measured warming effects on CO2 uptake by plants and release by plants and microbes.

Scientists estimate that within the next century permafrost will have declined 30% to 70% and there is limited accounting of how much carbon is stored in these frozen soils or the rate at which it will be released. For Dr. Natali:

“The only way we can accurately project future climate is to understand the responses of both plants and microbes to a warming climate. This study was the first to simulate whole ecosystem warming in the arctic, including permafrost degradation, similar to what is projected to happen as a result of climate change. There is a strong potential for significant global carbon emissions if rates calculated here become typical for permafrost ecosystems in a warmer world.”

Link to abstract »

WHRC is an independent research institute where scientists collaborate to examine the drivers and impacts of climate change and identify opportunities for conservation around the globe.

Contact: Eunice Youmans, Director of External Affairs 508-444-1509
Email Eunice Youmans

Eunice Youmans | EurekAlert!
Further information:
http://whrc.org/news/pressroom/PR-2014-Natali-Permafrost-Ecology.html

Further reports about: CO2 Change Climate Ecology Permafrost degradation ecosystem microbes

More articles from Earth Sciences:

nachricht New study reveals where MH370 debris more likely to be found
27.07.2016 | European Geosciences Union

nachricht Exploring one of the largest salt flats in the world
27.07.2016 | University of Massachusetts at Amherst

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-assembling nano inks form conductive and transparent grids during imprint

Transparent electronics devices are present in today’s thin film displays, solar cells, and touchscreens. The future will bring flexible versions of such devices. Their production requires printable materials that are transparent and remain highly conductive even when deformed. Researchers at INM – Leibniz Institute for New Materials have combined a new self-assembling nano ink with an imprint process to create flexible conductive grids with a resolution below one micrometer.

To print the grids, an ink of gold nanowires is applied to a substrate. A structured stamp is pressed on the substrate and forces the ink into a pattern. “The...

Im Focus: The Glowing Brain

A new Fraunhofer MEVIS method conveys medical interrelationships quickly and intuitively with innovative visualization technology

On the monitor, a brain spins slowly and can be examined from every angle. Suddenly, some sections start glowing, first on the side and then the entire back of...

Im Focus: Newly discovered material property may lead to high temp superconductivity

Researchers at the U.S. Department of Energy's (DOE) Ames Laboratory have discovered an unusual property of purple bronze that may point to new ways to achieve high temperature superconductivity.

While studying purple bronze, a molybdenum oxide, researchers discovered an unconventional charge density wave on its surface.

Im Focus: Mapping electromagnetic waveforms

Munich Physicists have developed a novel electron microscope that can visualize electromagnetic fields oscillating at frequencies of billions of cycles per second.

Temporally varying electromagnetic fields are the driving force behind the whole of electronics. Their polarities can change at mind-bogglingly fast rates, and...

Im Focus: Continental tug-of-war - until the rope snaps

Breakup of continents with two speed: Continents initially stretch very slowly along the future splitting zone, but then move apart very quickly before the onset of rupture. The final speed can be up to 20 times faster than in the first, slow extension phase.phases

Present-day continents were shaped hundreds of millions of years ago as the supercontinent Pangaea broke apart. Derived from Pangaea’s main fragments Gondwana...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

GROWING IN CITIES - Interdisciplinary Perspectives on Urban Gardening

15.07.2016 | Event News

SIGGRAPH2016 Computer Graphics Interactive Techniques, 24-28 July, Anaheim, California

15.07.2016 | Event News

Partner countries of FAIR accelerator meet in Darmstadt and approve developments

11.07.2016 | Event News

 
Latest News

New study reveals where MH370 debris more likely to be found

27.07.2016 | Earth Sciences

Dirty to drinkable

27.07.2016 | Materials Sciences

Exploring one of the largest salt flats in the world

27.07.2016 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>