Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Permafrost line recedes 130 km in 50 years

17.02.2010
The southern limit of permanently frozen ground, or permafrost, is now 130 kilometers further north than it was 50 years ago in the James Bay region, according to two researchers from the Department of Biology at Université Laval.

In a recent issue of the scientific journal Permafrost and Periglacial Processes, Serge Payette and Simon Thibault suggest that, if the trend continues, permafrost in the region will completely disappear in the near future.

The researchers measured the retreat of the permafrost border by observing hummocks known as "palsas," which form naturally over ice contained in the soil of northern peat bogs. Conditions in these mounds are conducive to the development of distinct vegetation—lichen, shrubs, and black spruce—that make them easy to spot in the field.

In an initial survey in 2004, the researchers examined seven bogs located between the 51st and 53rd parallels. They noted at that time that only two of the bogs contained palsas, whereas aerial photos taken in 1957 showed palsas present in all of the bogs. A second assessment in 2005 revealed that the number of palsas present in these two bogs had decreased over the course of one year by 86% and 90% respectively.

Helicopter flyovers between the 51st and 55th parallels also revealed that the palsas are in an advanced state of deterioration over the entire James Bay area.

While climate change is the most probable explanation for this phenomenon, the lack of long term climatic data for the area makes it impossible for the researchers to officially confirm this. Professor Payette notes, however, that the average annual temperature of the northern sites he has studied for over 20 years has increased by 2 degrees Celsius. "If this trend keeps up, what is left of the palsas in the James Bay bogs will disappear altogether in the near future, and it is likely that the permafrost will suffer the same fate," concludes the researcher affiliated to the Centre d'études nordiques.

Information:
Serge Payette
Department of Biology
Université Laval
418 656-2131 ext. 7538
serge.payette@bio.ulaval.ca
Source:
Jean-François Huppé
Media Relations
Université Laval
418 656-7785
jean-francois.huppe@dc.ulaval.ca

Jean-François Huppé | EurekAlert!
Further information:
http://www.ulaval.ca

More articles from Earth Sciences:

nachricht Hurricane Harvey: Dutch-Texan research shows most fatalities occurred outside flood zones
19.04.2018 | European Geosciences Union

nachricht Root exudates affect soil stability, water repellency
18.04.2018 | American Society of Agronomy

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>