Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Performance of an arch dam affected by the relaxation of its foundation following excavation

20.05.2011
Hohai University in Nanjing has established a research tradition in hydraulic engineering over the last 95 years. During this time, Hohai has become a first class institution of higher education that focuses on a wide range of engineering subjects including civil engineering and water resources, which are of particular interest.

China's hydropower development occurs mainly in the high mountains and canyons of the Qinghai-Tibet plateau in the southwestern provinces. Because of long term geological movement, these areas are subject to high levels of geostress with complex geological conditions.

Excavation of dam foundations in these high stress areas immediately destroys the natural stress balance of the rock mass, resulting in degradation of the material's mechanical properties, such as elastic modulus and compression strength, and the forming of a relaxation zone in the rock mass up to a depth of 10-20 m from the free surface.

Therefore there is considerable engineering justification in being able to determine the relaxation zone and its influence on the arch dam. At the same time the research results provide a sound design basis for the treatment of foundations. This study uses theoretical orthogonal experiments and numerical analysis methods to analyze the influence of relaxation on the performance of the arch dam at Jinping-I.

Three factors were adopted for the orthogonal experiments: the area of mass-height distribution of rock relaxation with respect to the dam height, the depth of rock perpendicular to the foundation, and the extent of the relaxation (the reduction in the magnitude of the elastic modulus of the rock in the relaxation zone). For each factor, four levels were selected for the orthogonal experiment. Since the maximum stress ó1 at the upstream face, the maximum stress ó3 at the downstream face, the tensile stress at the heel of the dam and the compression stress at the toe of the dam are suitable for characterizing the working behavior of an arch dam, they were chosen as the evolution indices.

The relaxation influence on the upstream and downstream principle stresses

According to the results of the analysis, the most significant factors affecting the maximum value of ó1 upstream are the extent of the relaxation, followed by the height. However, this only affects the area near the relaxation zone, and has little effect on more distant zones. The maximum value of ó3 downstream is affected to a greater extent by the extent and height of the relaxation, and is more sensitive to the relaxation resulting from excavation. Generally speaking, the relaxation of the foundation following excavation will increase the principle tensile stresses at the upstream face and the principle compression stress at the downstream face, which is undesirable for the safety of an arch dam.

Relaxation influence on stress at the dam heel and toe

When considering the relaxation of the rock mass, the orthogonal experiment results for the relaxation influence at the heel and toe stresses show the maximum value increased by 10.1 % and 11.6 %, respectively. According to range analysis, the main factor affecting the tensile stress at the dam heel was the extent of relaxation. Furthermore, the tensile and compression stresses at the dam heel and toe increased as the modulus decreased. Through range analysis, the most unfavorable combination can be determined.

Besides numerical analysis, sensitivity analysis was also conducted using the monitored data. Two limit cases, the upper and lower limits, were studied. Results show that the maximum principal stress is more sensitive to the extent of relaxation and is little affected by its depth. Generally, as the extent of relaxation increases, the tensile stress both upstream and at the dam heel, as well as the compressive stress downstream tend to increase while the compressive stress at the dam toe tends to decrease.

This paper outlines the use of the orthogonal experiment method to assess how relaxation of the foundation influences the performance of an arch dam following excavation. Through analysis, the conclusions drawn are:

Relaxation of the foundation excavation of an arch dam will increase both the tensile stress upstream and the compressive stress downstream, and it has a detrimental effect on the state of the dam stress.

Degradation of the elastic modulus of the rock mass is the main factor affecting dam stress, and the stress in the influenced areas increases as the extent of relaxation increases. The depth of relaxation has little effect on the dam stress.

Relaxation of the rock mass has a considerable impact on the dam stress in adjacent areas while it has little effect in more distant areas.

The authors are primarily affiliated to the College of Mechanics and Materials, Hohai University. The college conducts research mainly in the following areas: the safety evaluation and failure analysis of high dams; failure mechanisms and failure process simulations of concrete structures; constitutive law of engineering materials and its application; underground engineering; computational mechanics and simulation; and surface treatment with modern technology.

Funding to support this research was provided by the National Basic Research Program of China (Grant No. 2007CB714104), and the National Natural Science Foundation of China (Grant No. 51079045).

Ren QingWen | EurekAlert!
Further information:
http://www.hhu.edu.cn

More articles from Earth Sciences:

nachricht Six-decade-old space mystery solved with shoebox-sized satellite called a CubeSat
15.12.2017 | National Science Foundation

nachricht NSF-funded researchers find that ice sheet is dynamic and has repeatedly grown and shrunk
15.12.2017 | National Science Foundation

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Diamond Lenses and Space Lasers at Photonics West

15.12.2017 | Trade Fair News

A better way to weigh millions of solitary stars

15.12.2017 | Physics and Astronomy

New epidemic management system combats monkeypox outbreak in Nigeria

15.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>