Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Performance of an arch dam affected by the relaxation of its foundation following excavation

20.05.2011
Hohai University in Nanjing has established a research tradition in hydraulic engineering over the last 95 years. During this time, Hohai has become a first class institution of higher education that focuses on a wide range of engineering subjects including civil engineering and water resources, which are of particular interest.

China's hydropower development occurs mainly in the high mountains and canyons of the Qinghai-Tibet plateau in the southwestern provinces. Because of long term geological movement, these areas are subject to high levels of geostress with complex geological conditions.

Excavation of dam foundations in these high stress areas immediately destroys the natural stress balance of the rock mass, resulting in degradation of the material's mechanical properties, such as elastic modulus and compression strength, and the forming of a relaxation zone in the rock mass up to a depth of 10-20 m from the free surface.

Therefore there is considerable engineering justification in being able to determine the relaxation zone and its influence on the arch dam. At the same time the research results provide a sound design basis for the treatment of foundations. This study uses theoretical orthogonal experiments and numerical analysis methods to analyze the influence of relaxation on the performance of the arch dam at Jinping-I.

Three factors were adopted for the orthogonal experiments: the area of mass-height distribution of rock relaxation with respect to the dam height, the depth of rock perpendicular to the foundation, and the extent of the relaxation (the reduction in the magnitude of the elastic modulus of the rock in the relaxation zone). For each factor, four levels were selected for the orthogonal experiment. Since the maximum stress ó1 at the upstream face, the maximum stress ó3 at the downstream face, the tensile stress at the heel of the dam and the compression stress at the toe of the dam are suitable for characterizing the working behavior of an arch dam, they were chosen as the evolution indices.

The relaxation influence on the upstream and downstream principle stresses

According to the results of the analysis, the most significant factors affecting the maximum value of ó1 upstream are the extent of the relaxation, followed by the height. However, this only affects the area near the relaxation zone, and has little effect on more distant zones. The maximum value of ó3 downstream is affected to a greater extent by the extent and height of the relaxation, and is more sensitive to the relaxation resulting from excavation. Generally speaking, the relaxation of the foundation following excavation will increase the principle tensile stresses at the upstream face and the principle compression stress at the downstream face, which is undesirable for the safety of an arch dam.

Relaxation influence on stress at the dam heel and toe

When considering the relaxation of the rock mass, the orthogonal experiment results for the relaxation influence at the heel and toe stresses show the maximum value increased by 10.1 % and 11.6 %, respectively. According to range analysis, the main factor affecting the tensile stress at the dam heel was the extent of relaxation. Furthermore, the tensile and compression stresses at the dam heel and toe increased as the modulus decreased. Through range analysis, the most unfavorable combination can be determined.

Besides numerical analysis, sensitivity analysis was also conducted using the monitored data. Two limit cases, the upper and lower limits, were studied. Results show that the maximum principal stress is more sensitive to the extent of relaxation and is little affected by its depth. Generally, as the extent of relaxation increases, the tensile stress both upstream and at the dam heel, as well as the compressive stress downstream tend to increase while the compressive stress at the dam toe tends to decrease.

This paper outlines the use of the orthogonal experiment method to assess how relaxation of the foundation influences the performance of an arch dam following excavation. Through analysis, the conclusions drawn are:

Relaxation of the foundation excavation of an arch dam will increase both the tensile stress upstream and the compressive stress downstream, and it has a detrimental effect on the state of the dam stress.

Degradation of the elastic modulus of the rock mass is the main factor affecting dam stress, and the stress in the influenced areas increases as the extent of relaxation increases. The depth of relaxation has little effect on the dam stress.

Relaxation of the rock mass has a considerable impact on the dam stress in adjacent areas while it has little effect in more distant areas.

The authors are primarily affiliated to the College of Mechanics and Materials, Hohai University. The college conducts research mainly in the following areas: the safety evaluation and failure analysis of high dams; failure mechanisms and failure process simulations of concrete structures; constitutive law of engineering materials and its application; underground engineering; computational mechanics and simulation; and surface treatment with modern technology.

Funding to support this research was provided by the National Basic Research Program of China (Grant No. 2007CB714104), and the National Natural Science Foundation of China (Grant No. 51079045).

Ren QingWen | EurekAlert!
Further information:
http://www.hhu.edu.cn

More articles from Earth Sciences:

nachricht Satellites reveal bird habitat loss in California
28.03.2017 | Duke University

nachricht Northern oceans pumped CO2 into the atmosphere
27.03.2017 | CAGE - Center for Arctic Gas Hydrate, Climate and Environment

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers create artificial materials atom-by-atom

28.03.2017 | Physics and Astronomy

Researchers show p300 protein may suppress leukemia in MDS patients

28.03.2017 | Health and Medicine

Asian dust providing key nutrients for California's giant sequoias

28.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>