Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Performance of an arch dam affected by the relaxation of its foundation following excavation

20.05.2011
Hohai University in Nanjing has established a research tradition in hydraulic engineering over the last 95 years. During this time, Hohai has become a first class institution of higher education that focuses on a wide range of engineering subjects including civil engineering and water resources, which are of particular interest.

China's hydropower development occurs mainly in the high mountains and canyons of the Qinghai-Tibet plateau in the southwestern provinces. Because of long term geological movement, these areas are subject to high levels of geostress with complex geological conditions.

Excavation of dam foundations in these high stress areas immediately destroys the natural stress balance of the rock mass, resulting in degradation of the material's mechanical properties, such as elastic modulus and compression strength, and the forming of a relaxation zone in the rock mass up to a depth of 10-20 m from the free surface.

Therefore there is considerable engineering justification in being able to determine the relaxation zone and its influence on the arch dam. At the same time the research results provide a sound design basis for the treatment of foundations. This study uses theoretical orthogonal experiments and numerical analysis methods to analyze the influence of relaxation on the performance of the arch dam at Jinping-I.

Three factors were adopted for the orthogonal experiments: the area of mass-height distribution of rock relaxation with respect to the dam height, the depth of rock perpendicular to the foundation, and the extent of the relaxation (the reduction in the magnitude of the elastic modulus of the rock in the relaxation zone). For each factor, four levels were selected for the orthogonal experiment. Since the maximum stress ó1 at the upstream face, the maximum stress ó3 at the downstream face, the tensile stress at the heel of the dam and the compression stress at the toe of the dam are suitable for characterizing the working behavior of an arch dam, they were chosen as the evolution indices.

The relaxation influence on the upstream and downstream principle stresses

According to the results of the analysis, the most significant factors affecting the maximum value of ó1 upstream are the extent of the relaxation, followed by the height. However, this only affects the area near the relaxation zone, and has little effect on more distant zones. The maximum value of ó3 downstream is affected to a greater extent by the extent and height of the relaxation, and is more sensitive to the relaxation resulting from excavation. Generally speaking, the relaxation of the foundation following excavation will increase the principle tensile stresses at the upstream face and the principle compression stress at the downstream face, which is undesirable for the safety of an arch dam.

Relaxation influence on stress at the dam heel and toe

When considering the relaxation of the rock mass, the orthogonal experiment results for the relaxation influence at the heel and toe stresses show the maximum value increased by 10.1 % and 11.6 %, respectively. According to range analysis, the main factor affecting the tensile stress at the dam heel was the extent of relaxation. Furthermore, the tensile and compression stresses at the dam heel and toe increased as the modulus decreased. Through range analysis, the most unfavorable combination can be determined.

Besides numerical analysis, sensitivity analysis was also conducted using the monitored data. Two limit cases, the upper and lower limits, were studied. Results show that the maximum principal stress is more sensitive to the extent of relaxation and is little affected by its depth. Generally, as the extent of relaxation increases, the tensile stress both upstream and at the dam heel, as well as the compressive stress downstream tend to increase while the compressive stress at the dam toe tends to decrease.

This paper outlines the use of the orthogonal experiment method to assess how relaxation of the foundation influences the performance of an arch dam following excavation. Through analysis, the conclusions drawn are:

Relaxation of the foundation excavation of an arch dam will increase both the tensile stress upstream and the compressive stress downstream, and it has a detrimental effect on the state of the dam stress.

Degradation of the elastic modulus of the rock mass is the main factor affecting dam stress, and the stress in the influenced areas increases as the extent of relaxation increases. The depth of relaxation has little effect on the dam stress.

Relaxation of the rock mass has a considerable impact on the dam stress in adjacent areas while it has little effect in more distant areas.

The authors are primarily affiliated to the College of Mechanics and Materials, Hohai University. The college conducts research mainly in the following areas: the safety evaluation and failure analysis of high dams; failure mechanisms and failure process simulations of concrete structures; constitutive law of engineering materials and its application; underground engineering; computational mechanics and simulation; and surface treatment with modern technology.

Funding to support this research was provided by the National Basic Research Program of China (Grant No. 2007CB714104), and the National Natural Science Foundation of China (Grant No. 51079045).

Ren QingWen | EurekAlert!
Further information:
http://www.hhu.edu.cn

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>