Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Performance of an arch dam affected by the relaxation of its foundation following excavation

20.05.2011
Hohai University in Nanjing has established a research tradition in hydraulic engineering over the last 95 years. During this time, Hohai has become a first class institution of higher education that focuses on a wide range of engineering subjects including civil engineering and water resources, which are of particular interest.

China's hydropower development occurs mainly in the high mountains and canyons of the Qinghai-Tibet plateau in the southwestern provinces. Because of long term geological movement, these areas are subject to high levels of geostress with complex geological conditions.

Excavation of dam foundations in these high stress areas immediately destroys the natural stress balance of the rock mass, resulting in degradation of the material's mechanical properties, such as elastic modulus and compression strength, and the forming of a relaxation zone in the rock mass up to a depth of 10-20 m from the free surface.

Therefore there is considerable engineering justification in being able to determine the relaxation zone and its influence on the arch dam. At the same time the research results provide a sound design basis for the treatment of foundations. This study uses theoretical orthogonal experiments and numerical analysis methods to analyze the influence of relaxation on the performance of the arch dam at Jinping-I.

Three factors were adopted for the orthogonal experiments: the area of mass-height distribution of rock relaxation with respect to the dam height, the depth of rock perpendicular to the foundation, and the extent of the relaxation (the reduction in the magnitude of the elastic modulus of the rock in the relaxation zone). For each factor, four levels were selected for the orthogonal experiment. Since the maximum stress ó1 at the upstream face, the maximum stress ó3 at the downstream face, the tensile stress at the heel of the dam and the compression stress at the toe of the dam are suitable for characterizing the working behavior of an arch dam, they were chosen as the evolution indices.

The relaxation influence on the upstream and downstream principle stresses

According to the results of the analysis, the most significant factors affecting the maximum value of ó1 upstream are the extent of the relaxation, followed by the height. However, this only affects the area near the relaxation zone, and has little effect on more distant zones. The maximum value of ó3 downstream is affected to a greater extent by the extent and height of the relaxation, and is more sensitive to the relaxation resulting from excavation. Generally speaking, the relaxation of the foundation following excavation will increase the principle tensile stresses at the upstream face and the principle compression stress at the downstream face, which is undesirable for the safety of an arch dam.

Relaxation influence on stress at the dam heel and toe

When considering the relaxation of the rock mass, the orthogonal experiment results for the relaxation influence at the heel and toe stresses show the maximum value increased by 10.1 % and 11.6 %, respectively. According to range analysis, the main factor affecting the tensile stress at the dam heel was the extent of relaxation. Furthermore, the tensile and compression stresses at the dam heel and toe increased as the modulus decreased. Through range analysis, the most unfavorable combination can be determined.

Besides numerical analysis, sensitivity analysis was also conducted using the monitored data. Two limit cases, the upper and lower limits, were studied. Results show that the maximum principal stress is more sensitive to the extent of relaxation and is little affected by its depth. Generally, as the extent of relaxation increases, the tensile stress both upstream and at the dam heel, as well as the compressive stress downstream tend to increase while the compressive stress at the dam toe tends to decrease.

This paper outlines the use of the orthogonal experiment method to assess how relaxation of the foundation influences the performance of an arch dam following excavation. Through analysis, the conclusions drawn are:

Relaxation of the foundation excavation of an arch dam will increase both the tensile stress upstream and the compressive stress downstream, and it has a detrimental effect on the state of the dam stress.

Degradation of the elastic modulus of the rock mass is the main factor affecting dam stress, and the stress in the influenced areas increases as the extent of relaxation increases. The depth of relaxation has little effect on the dam stress.

Relaxation of the rock mass has a considerable impact on the dam stress in adjacent areas while it has little effect in more distant areas.

The authors are primarily affiliated to the College of Mechanics and Materials, Hohai University. The college conducts research mainly in the following areas: the safety evaluation and failure analysis of high dams; failure mechanisms and failure process simulations of concrete structures; constitutive law of engineering materials and its application; underground engineering; computational mechanics and simulation; and surface treatment with modern technology.

Funding to support this research was provided by the National Basic Research Program of China (Grant No. 2007CB714104), and the National Natural Science Foundation of China (Grant No. 51079045).

Ren QingWen | EurekAlert!
Further information:
http://www.hhu.edu.cn

More articles from Earth Sciences:

nachricht Predicting unpredictability: Information theory offers new way to read ice cores
07.12.2016 | Santa Fe Institute

nachricht Sea ice hit record lows in November
07.12.2016 | University of Colorado at Boulder

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>