Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Penn researchers quantify the changes that lightning inspires in rock

27.04.2017

Benjamin Franklin, founder of the University of Pennsylvania, is believed to have experimented with lightning's powerful properties using a kite and key, likely coming close to electrocuting himself in the process.

In a new set of experiments at Penn, researchers have probed the power of lightning in a less risky but much more technologically advanced fashion.


The study examined a rock fulgurite -- a thin layer of glass that forms when lightning strikes a rock's surface. The sample was collected from northern Italy's Mount Mottarone.

Credit: Reto Gieré

Chiara Elmi, a postdoctoral researcher in Penn's Department of Earth and Environmental Science in the School of Arts & Sciences, led the work, which used a suite of techniques to examine a fulgurite, a thin layer of glass that forms on the surface of rock when lightning hits it.

Among other findings, the study discovered that, based on the crystalline material in the sample, the minimum temperature at which the fulgurite formed was roughly 1,700 degrees Celsius.

"People have been using morphological and chemical approaches to study rock fulgurites, but this was the first time a rock fulgurite was classified from a mineralogical point of view," Elmi said. "I was able to adapt an approach that I've used before to study the effects of meteorite impact in rocks and sediments to analyze a tiny amount of material in order to understand the phase transitions that occur when a lightning hits a rock."

Elmi collaborated on the work with senior author Reto Gieré, professor and chair of the Department of Earth and Environmental Science, along with the department's Jiangzhi Chen, a postdoctoral researcher, and David Goldsby, an associate professor.

Their paper will be published in the journal American Mineralogist.

In a study published last year, Gieré characterized a rock fulgurite found in southern France, finding that the lightning bolt that hit it transformed the layer of rock beneath the fulgurite on the atomic level, producing tell-tale structures called shock lamellae.

The team wanted to pursue a different line of study in the new work.

"In this case," Gieré said, "we instead wanted to study the glass layer in more detail to find out what the minerals present could tell us about the temperature of lightning."

To do so, Elmi performed an X-ray diffraction analysis, which collects information about the way that X-rays interact with crystalline materials to infer the mineral content of a given sample. The challenge in this instance, however, was that a typical X-ray diffraction analysis requires roughly a gram of material, and the quantity of the 10-micrometer thick fulgurite was not nearly that substantial.

To adapt the technique for a smaller quantity of sample, Elmi put the material in a narrow, rotating capillary tube and adjusted the diffraction optics to align, concentrate and direct the X-ray beam toward the sample. The analysis of the fulgurite revealed the presence of glass as well as cristobalite, a mineral with the same chemical composition of quartz but possessing a distinct crystal structure. Cristobalite only forms at very high temperature, and the glass indicated that the top layer of granite melted during the lightning strike. Elmi's analysis enabled her to quantify the glass and the residual minerals in a rock fulgurite for the first time.

"These two signatures indicate a system that received a shock of high temperature," Elmi said. "This analysis also indicates the minimal temperature you have to create the glass because cristobalite forms around 1,700 Celsius, so you know that this temperature was achieved when the lightning hit the rock."

The measured temperature of lightning in the air is in fact much higher -- measured at around 30,000 degrees Celsius -- but this analysis indicates that the rock itself was raised from ambient temperatures to at least 1,700 Celsius.

The team performed additional analyses on the fulgurite sample. They found organic material in the sample, indicating that the lightning burned lichen or moss growing on the surface of the rock and then trapped it inside the material.

"This is an extremely fast event," Gieré said. "The rock heats up very quickly and also cools down very quickly. That traps gases in the glass and some of these gases were formed by the combustion of organic material."

In future studies, the team hopes to develop a complete model of what happens to rocks during a lightning strike, incorporating chemical, physical, biological and mineralogical observations. They note that people like Franklin who experience near-misses with lightning are lucky indeed.

"It's amazing that a bolt of lightning can turn granite molten and completely change its structure, yet some people survive lightning strikes," said Gieré.

Media Contact

Katherine Unger Baillie
kbaillie@upenn.edu
215-898-9194

 @Penn

http://www.upenn.edu/pennnews 

Katherine Unger Baillie | EurekAlert!

Further reports about: X-ray X-ray diffraction crystalline glass organic material

More articles from Earth Sciences:

nachricht Clear as mud: Desiccation cracks help reveal the shape of water on Mars
20.04.2018 | Geological Society of America

nachricht Hurricane Harvey: Dutch-Texan research shows most fatalities occurred outside flood zones
19.04.2018 | European Geosciences Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

New research could literally squeeze more power out of solar cells

20.04.2018 | Physics and Astronomy

New record on squeezing light to one atom: Atomic Lego guides light below one nanometer

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>