Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Penn Research Helps Paint Finer Picture of Massive 1700 Earthquake

15.05.2013
In 1700, a massive earthquake struck the west coast of North America. Though it was powerful enough to cause a tsunami as far as Japan, a lack of local documentation has made studying this historic event challenging.

Now, researchers from the University of Pennsylvania have helped unlock this geological mystery using a fossil-based technique. Their work provides a finer-grained portrait of this earthquake and the changes in coastal land level it produced, enabling modelers to better prepare for future events.

Penn’s team includes Benjamin Horton, associate professor and director of the Sea Level Research Laboratory in the Department of Earth and Environmental Science in the School of Arts and Sciences, along with then lab members Simon Engelhart and Andrea Hawkes. They collaborated with researchers from Canada’s University of Victoria, the National Taiwan University, the Geological Survey of Canada and the United States Geological Survey.

The research was published in the Journal of Geophysical Research: Solid Earth.

The Cascadia Subduction Zone runs along the Pacific Northwest coast of the United States to Vancouver Island in Canada. This major fault line is capable of producing megathrust earthquakes 9.0 or higher, though, due to a dearth of observations or historical records, this trait was only discovered within the last several decades from geology records. The Lewis and Clark expedition did not make the first extensive surveys of the region until more than 100 years later, and contemporaneous aboriginal accounts were scarce and incomplete.

The 1700 Cascadia event was better documented in Japan than in the Americas. Records of the “orphan tsunami” — so named because its “parent” earthquake was too far away to be felt — gave earth scientists hints that this subduction zone was capable of such massive seismic activity. Geological studies provided information about the earthquake, but many critical details remained lost to history.

“Previous research had determined the timing and the magnitude, but what we didn't know was how the rupture happened,” Horton said. “Did it rupture in one big long segment, more than a thousand kilometers, or did it rupture in parcels?”

To provide a clearer picture of how the earthquake occurred, Horton and his colleagues applied a technique they have used in assessing historic sea-level rise. They traveled to various sites along the Cascadia subduction zone, taking core samples from up and down the coast and working with local researchers who donated pre-existing data sets. The researchers’ targets were microscopic fossils known as foraminifera. Through radiocarbon dating and an analysis of different species’ positions with the cores over time, the researchers were able to piece together a historical picture of the changes in land and sea level along the coastline. The research revealed how much the coast suddenly subsided during the earthquake. This subsidence was used to infer how much the tectonic plates moved during the earthquake.

“What we were able to show for the first time is that the rupture of Cascadia was heterogeneous, making it similar to what happened with the recent major earthquakes in Japan, Chile and Sumatra,” Horton said.

This level of regional detail for land level changes is critical for modeling and disaster planning.

“It’s only when you have that data that you can start to build accurate models of earthquake ruptures and tsunami inundation,” Horton said. “There were areas of the west coast of the United States that were more susceptible to larger coastal subsidence than others.”

The Cascadia subduction zone is of particular interest to geologists and coastal managers because geological evidence points to recurring seismic activity along the fault line, with intervals between 300 and 500 years. With the last major event occurring in 1700, another earthquake could be on the horizon. A better understanding of how such an event might unfold has the potential to save lives.

“The next Cascadia earthquake has the potential to be the biggest natural disaster that the Unites States will have to come to terms with — far bigger than Sandy or even Katrina,” Horton said. “It would happen with very little warning; some areas of Oregon will have less than 20 minutes to evacuate before a large tsunami will inundate the coastline like in Sumatra in 2004 and Japan in 2011.”

The research was supported by the National Science Foundation, the United States Geological Survey and the University of Victoria. Simon Engelhart and Andrea Hawkes are now assistant professors at the University of Rhode Island and the University of North Carolina, respectively. Their co-authors were Pei-Ling Wang of the University of Victoria and National Taiwan University, Kelin Wang of the University of Victoria and the Geological Survey of Canada’s Pacific Geoscience Centre, Alan Nelson of the United States Geological Survey’s Geologic Hazards Science Center and Robert Witter of the United States Geological Survey’s Alaska Science Center.

Evan Lerner | EurekAlert!
Further information:
http://www.upenn.edu

More articles from Earth Sciences:

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

nachricht Modeling magma to find copper
13.01.2017 | Université de Genève

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>