Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Past tropical climate change linked to ocean circulation

24.08.2012
A new record of past temperature change in the tropical Atlantic Ocean's subsurface provides clues as to why the Earth's climate is so sensitive to ocean circulation patterns, according to climate scientists at Texas A&M University.
Geological oceanographer Matthew Schmidt and two of his graduate students teamed up with Ping Chang, a physical oceanographer and climate modeler, to help uncover an important climate connection between the tropics and the high latitude North Atlantic. Their new findings are in the current issue of PNAS (Proceedings of the National Academy of Sciences).

The researchers used geochemical clues in fossils called foraminifera, tiny sea creatures with a hard shell, collected from a sediment core located off the northern coast of Venezuela, to generate a 22,000-year record of past ocean temperature and salinity changes in the upper 1,500 feet of water in the western tropical Atlantic. They also conducted global climate model simulations under the past climate condition to interpret this new observational record in the context of changes in the strength of the global ocean conveyor-belt circulation.

"What we found was that subsurface temperatures in the western tropical Atlantic rapidly warmed during cold periods in Earth's past," Schmidt explains.

"Together with our new modeling experiments, we think this is evidence that when the global conveyor slowed down during cold periods in the past, warm subsurface waters that are normally trapped in the subtropical North Atlantic flowed southward and rapidly warmed the deep tropics. When the tropics warmed, it altered climate patterns around the globe."

He notes that as an example, if ocean temperatures were to warm along the west coast of Africa, the monsoon rainfall in that region would be dramatically reduced, affecting millions of people living in sub-Saharan Africa. The researchers also point out that the southward flow of ocean heat during cold periods in the North Atlantic also causes the band of rainfall in the tropics known as the Intertropical Convergence Zone to migrate southward, resulting in much drier conditions in northern South American countries and a wetter South Atlantic.

"Evidence is mounting that the Earth's climate system has sensitive triggers that can cause abrupt and dramatic shifts in global climate," Schmidt said.

"What we found in our subsurface reconstruction was that the onset of warmer temperatures, thought to reflect the opening of this 'gateway' mechanism, occurred in less than a few centuries. It also tells us that it might be a good idea to monitor subsurface temperatures in the western tropical Atlantic to assess how the strength of the ocean conveyor might be changing over the next few decades as Earth's climate continues to warm."

"One way to prepare for future climate change is to increase our understanding of how it has operated in the recent past."

This research was funded by the National Science Foundation.
About Research at Texas A&M University: As one of the world's leading research institutions, Texas A&M is in the vanguard in making significant contributions to the storehouse of knowledge, including that of science and technology. Research conducted at Texas A&M represents an annual investment of more than $700 million. That research creates new knowledge that provides basic, fundamental and applied contributions resulting in many cases in economic benefits to the state, nation and world.

Keith Randall | EurekAlert!
Further information:
http://www.tamu.edu

More articles from Earth Sciences:

nachricht NASA's AIM observes early noctilucent ice clouds over Antarctica
05.12.2016 | NASA/Goddard Space Flight Center

nachricht GPM sees deadly tornadic storms moving through US Southeast
01.12.2016 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>