Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Past tropical climate change linked to ocean circulation

A new record of past temperature change in the tropical Atlantic Ocean's subsurface provides clues as to why the Earth's climate is so sensitive to ocean circulation patterns, according to climate scientists at Texas A&M University.
Geological oceanographer Matthew Schmidt and two of his graduate students teamed up with Ping Chang, a physical oceanographer and climate modeler, to help uncover an important climate connection between the tropics and the high latitude North Atlantic. Their new findings are in the current issue of PNAS (Proceedings of the National Academy of Sciences).

The researchers used geochemical clues in fossils called foraminifera, tiny sea creatures with a hard shell, collected from a sediment core located off the northern coast of Venezuela, to generate a 22,000-year record of past ocean temperature and salinity changes in the upper 1,500 feet of water in the western tropical Atlantic. They also conducted global climate model simulations under the past climate condition to interpret this new observational record in the context of changes in the strength of the global ocean conveyor-belt circulation.

"What we found was that subsurface temperatures in the western tropical Atlantic rapidly warmed during cold periods in Earth's past," Schmidt explains.

"Together with our new modeling experiments, we think this is evidence that when the global conveyor slowed down during cold periods in the past, warm subsurface waters that are normally trapped in the subtropical North Atlantic flowed southward and rapidly warmed the deep tropics. When the tropics warmed, it altered climate patterns around the globe."

He notes that as an example, if ocean temperatures were to warm along the west coast of Africa, the monsoon rainfall in that region would be dramatically reduced, affecting millions of people living in sub-Saharan Africa. The researchers also point out that the southward flow of ocean heat during cold periods in the North Atlantic also causes the band of rainfall in the tropics known as the Intertropical Convergence Zone to migrate southward, resulting in much drier conditions in northern South American countries and a wetter South Atlantic.

"Evidence is mounting that the Earth's climate system has sensitive triggers that can cause abrupt and dramatic shifts in global climate," Schmidt said.

"What we found in our subsurface reconstruction was that the onset of warmer temperatures, thought to reflect the opening of this 'gateway' mechanism, occurred in less than a few centuries. It also tells us that it might be a good idea to monitor subsurface temperatures in the western tropical Atlantic to assess how the strength of the ocean conveyor might be changing over the next few decades as Earth's climate continues to warm."

"One way to prepare for future climate change is to increase our understanding of how it has operated in the recent past."

This research was funded by the National Science Foundation.
About Research at Texas A&M University: As one of the world's leading research institutions, Texas A&M is in the vanguard in making significant contributions to the storehouse of knowledge, including that of science and technology. Research conducted at Texas A&M represents an annual investment of more than $700 million. That research creates new knowledge that provides basic, fundamental and applied contributions resulting in many cases in economic benefits to the state, nation and world.

Keith Randall | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht Receding glaciers in Bolivia leave communities at risk
20.10.2016 | European Geosciences Union

nachricht UM researchers study vast carbon residue of ocean life
19.10.2016 | University of Miami Rosenstiel School of Marine & Atmospheric Science

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>