Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Past climate of the northern Antarctic Peninsular informs global warming debate

10.11.2009
Past Antarctic climate

The seriousness of current global warming is underlined by a reconstruction of climate at Maxwell Bay in the South Shetland Islands of the Antarctic Peninsula over approximately the last 14,000 years, which appears to show that the current warming and widespread loss of glacial ice are unprecedented.

"At no time during the last 14 thousand years was there a period of climate warming and loss of ice as large and regionally synchronous as that we are now witnessing in the Antarctic Peninsula," says team member Dr Steve Bohaty of the National Oceanography Centre, Southampton (NOCS), home of the University of Southampton's School of Ocean and Earth Science (SOES)."

The findings are based on a detailed analysis of the thickest Holocene sediment core yet drilled in the Antarctic Peninsula. "By studying the climate history of the past and identifying causes of these changes, we are better placed to evaluate current climate change and its impacts in the Antarctic," says Dr Bohaty.

As part of a 2005 research cruise aboard the American icebreaker RV/IB Nathanial B. Palmer, the scientists drilled down through the sediments at Maxwell Bay, a fjord at the northwest tip of the Antarctic Peninsula. They drilled down as far as the bedrock, obtaining a nearly complete 108.3-metre sediment core.

Back in the lab, they performed a battery of detailed sedimentological and geochemical analyses on the core. Radiocarbon dating showed that the oldest sediments at the bottom of the core were deposited between 14.1 and 14.8 thousand years ago, and sedimentation rates at the site varied from 0.7 to around 30 milimetres a year through the Holocene; that is, the geological period that began around 11,700 years ago, continuing to the present.

They conclude that ice was grounded in the fjord during the Last Glacial Maximum – the height of the last ice age – and eroded older sediments from the fjord. Later, the grounded ice retreated, leaving a permanent floating ice canopy.

The evidence points to a period of rapid glacial retreat from 10.1 to 8.2 thousand years ago, followed by a period of reduced sea-ice cover and warm water conditions occurring between 8.2 and 5.9 thousand years ago. An important finding of the study is that the mid-Holocene warming interval does not appear to have occurred synchronously throughout the region, and its timing and duration was most likely influenced at different sites by local oceanographic controls, as well as physical geography.

Following the mid-Holocene warming interval, the climate gradually cooled over the next three thousand years or so, resulting in more extensive sea-ice cover in the bay. But the researchers find no evidence that the ice advanced in Maxwell Bay during the so-called Little Ice Age in the sixteenth to mid-nineteenth century.

The Antarctic Peninsula area has warmed 3 °C in the past five decades, with increased rainfall and a widespread retreat of glaciers. "Atmospheric warming trends linked to global climate change are an obvious culprit for the observed regional climate changes," say the researchers.

The study was supported by the US National Science Foundation Office of Polar Programs.

The authors are: K. T. Milliken and J. B. Anderson (Rice University), J.S. Wellner (University of Houston), S.M. Bohaty (NOCS/SOES) and P.L. Manley (Middlebury College, Vermont).

Publication:

Milliken, K. T., et al. High-resolution Holocene climate record from Maxwell Bay, South Shetland Islands, Antarctica. Geological Society of America Bulletin 121, 1711-1725 (2009).

http://gsabulletin.gsapubs.org/content/121/11-12/1711

The National Oceanography Centre, Southampton is the UK's focus for ocean science. It is one of the world's leading institutions devoted to research, teaching and technology development in ocean and Earth science. Over 500 research scientists, lecturing, support and seagoing staff are based at the centre's purpose-built waterside campus in Southampton along with over 700 undergraduate and postgraduate students.

The National Oceanography Centre, Southampton is a collaboration between the University of Southampton and the Natural Environment Research Council. The NERC royal research ships RRS James Cook and RRS Discovery are based at NOCS as is the National Marine Equipment Pool which includes Autosub and Isis, two of the world's deepest diving research vehicles.

Dr. Rory Howlett | EurekAlert!
Further information:
http://www.soton.ac.uk

More articles from Earth Sciences:

nachricht Climate change weakens Walker circulation
20.10.2017 | MARUM - Zentrum für Marine Umweltwissenschaften an der Universität Bremen

nachricht Shallow soils promote savannas in South America
20.10.2017 | Senckenberg Forschungsinstitut und Naturmuseen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>