Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Past Atlantic Hurricanes Linked to Climate Change

14.08.2009
Climate researchers show intense hurricanes in the Atlantic Ocean over the last 1,500 years were closely linked to long-term changes in the El Niño/Southern Oscillation (ENSO) and sea surface temperature. The finding, reported in Nature, could help with future hurricane modeling and prediction.

In the Aug. 13 issue of the journal Nature, climate researchers including Jonathan Woodruff of the University of Massachusetts Amherst show that the frequency of intense hurricanes in the Atlantic Ocean over the last 1,500 years has been closely linked to long-term changes in the El Niño/Southern Oscillation (ENSO) and sea surface temperature. The finding could help with hurricane modeling and prediction in the future.

Establishing the link between hurricane variability and climate change over these longer timescales “is a new viewpoint for us,” Woodruff explains. “There’s a randomness to hurricanes. But the fact that we can see trends that rise above that randomness is significant and a bit of a surprise. Our work indicates that hurricane activity has responded noticeably to past climate shifts. When considering future climate change over the next century, our results indicate that measurable changes in hurricane activity could occur, rising above the noise in the system.”

A relationship between ENSO, sea surface temperature and hurricane activity is seen in modern times, Woodruff says, but the historical record based on ships’ logs and other observations is not long enough to assess variability on timescales longer than a few decades at best. “Given the possible effects of continued climate warming on intense tropical cyclone activity, it’s essential that we develop an understanding of how past climate change has affected tropical cyclone frequency, intensity and track on longer timescales,” the geologist says. “This work is another step forward in understanding the complex relationship between climate variability and Atlantic hurricane activity.”

Woodruff and colleagues’ study shows that a statistical climate model and actual paleoclimate data cross-validate each other over the last 1,500 years during key intervals of climatic change.

Specifically, UMass Amherst’s Woodruff and colleagues at Penn State and Woods Hole Oceanographic Institute prepared sedimentary reconstructions of hurricane-induced flooding, preserved in coastal ponds and salt marshes and collected as core samples from eight representative sites throughout the western North Atlantic, an approach known as paleotempestology.

These environments are usually protected from the sea by barrier beach systems. They enjoy sustained quiet periods during which only fine-grained mud and organic materials build up on pond floors and marsh surfaces. But during hurricanes and other storms, these normally calm environments are overrun with ocean waves and storm surges that carry in coarser sand from the barrier beaches. The sedimentary record is thus one of fine-grained organic mud, interbedded with coarse-grained, storm-induced deposits. Such deposits serve as natural archives of past hurricanes, with storm reconstructions that can extend back for many thousands of years, Woodruff points out.

Although still limited to a few reconstructions at present, he and colleagues have now observed statistically significant trends in tropical cyclone activity emerging from paleo-hurricane records. They compared these trends to data from a statistical model which independently predicted hurricane variability using paleo-reconstructions of climate factors known to influence hurricane activity, such as sea surface temperature, ENSO and the North Atlantic Oscillation.

The model predicted similar trends to those observed in the paleo-storm reconstructions, with an observed decrease in hurricane activity during the “Little Ice Age” around 300 years ago, a time when sea surface temperatures were lower than today and El Niño events appear to have occurred more frequently. Likewise, a period of increased hurricane activity similar to present levels also occurred around 1,000 years ago during an interval known as the “Medieval Climate Anomaly,” driven predominantly by increases in both sea surface temperature and the frequency of La Niña events.

Woodruff says the new finding “is like so much in science―in hindsight it makes sense. When the evidence is supplied, it’s simple enough to see the relationships, as in this case with the two independent records telling the same story. But until we had this evidence, things were much less clear.”

Jon Woodruff | Newswise Science News
Further information:
http://www.nsm.umass.edu

More articles from Earth Sciences:

nachricht Climate satellite: Tracking methane with robust laser technology
22.06.2017 | Fraunhofer-Gesellschaft

nachricht How reliable are shells as climate archives?
21.06.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>