Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Past Atlantic Hurricanes Linked to Climate Change

14.08.2009
Climate researchers show intense hurricanes in the Atlantic Ocean over the last 1,500 years were closely linked to long-term changes in the El Niño/Southern Oscillation (ENSO) and sea surface temperature. The finding, reported in Nature, could help with future hurricane modeling and prediction.

In the Aug. 13 issue of the journal Nature, climate researchers including Jonathan Woodruff of the University of Massachusetts Amherst show that the frequency of intense hurricanes in the Atlantic Ocean over the last 1,500 years has been closely linked to long-term changes in the El Niño/Southern Oscillation (ENSO) and sea surface temperature. The finding could help with hurricane modeling and prediction in the future.

Establishing the link between hurricane variability and climate change over these longer timescales “is a new viewpoint for us,” Woodruff explains. “There’s a randomness to hurricanes. But the fact that we can see trends that rise above that randomness is significant and a bit of a surprise. Our work indicates that hurricane activity has responded noticeably to past climate shifts. When considering future climate change over the next century, our results indicate that measurable changes in hurricane activity could occur, rising above the noise in the system.”

A relationship between ENSO, sea surface temperature and hurricane activity is seen in modern times, Woodruff says, but the historical record based on ships’ logs and other observations is not long enough to assess variability on timescales longer than a few decades at best. “Given the possible effects of continued climate warming on intense tropical cyclone activity, it’s essential that we develop an understanding of how past climate change has affected tropical cyclone frequency, intensity and track on longer timescales,” the geologist says. “This work is another step forward in understanding the complex relationship between climate variability and Atlantic hurricane activity.”

Woodruff and colleagues’ study shows that a statistical climate model and actual paleoclimate data cross-validate each other over the last 1,500 years during key intervals of climatic change.

Specifically, UMass Amherst’s Woodruff and colleagues at Penn State and Woods Hole Oceanographic Institute prepared sedimentary reconstructions of hurricane-induced flooding, preserved in coastal ponds and salt marshes and collected as core samples from eight representative sites throughout the western North Atlantic, an approach known as paleotempestology.

These environments are usually protected from the sea by barrier beach systems. They enjoy sustained quiet periods during which only fine-grained mud and organic materials build up on pond floors and marsh surfaces. But during hurricanes and other storms, these normally calm environments are overrun with ocean waves and storm surges that carry in coarser sand from the barrier beaches. The sedimentary record is thus one of fine-grained organic mud, interbedded with coarse-grained, storm-induced deposits. Such deposits serve as natural archives of past hurricanes, with storm reconstructions that can extend back for many thousands of years, Woodruff points out.

Although still limited to a few reconstructions at present, he and colleagues have now observed statistically significant trends in tropical cyclone activity emerging from paleo-hurricane records. They compared these trends to data from a statistical model which independently predicted hurricane variability using paleo-reconstructions of climate factors known to influence hurricane activity, such as sea surface temperature, ENSO and the North Atlantic Oscillation.

The model predicted similar trends to those observed in the paleo-storm reconstructions, with an observed decrease in hurricane activity during the “Little Ice Age” around 300 years ago, a time when sea surface temperatures were lower than today and El Niño events appear to have occurred more frequently. Likewise, a period of increased hurricane activity similar to present levels also occurred around 1,000 years ago during an interval known as the “Medieval Climate Anomaly,” driven predominantly by increases in both sea surface temperature and the frequency of La Niña events.

Woodruff says the new finding “is like so much in science―in hindsight it makes sense. When the evidence is supplied, it’s simple enough to see the relationships, as in this case with the two independent records telling the same story. But until we had this evidence, things were much less clear.”

Jon Woodruff | Newswise Science News
Further information:
http://www.nsm.umass.edu

More articles from Earth Sciences:

nachricht Sea ice extent sinks to record lows at both poles
23.03.2017 | NASA/Goddard Space Flight Center

nachricht Less radiation in inner Van Allen belt than previously believed
21.03.2017 | DOE/Los Alamos National Laboratory

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>