Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Past Atlantic Hurricanes Linked to Climate Change

14.08.2009
Climate researchers show intense hurricanes in the Atlantic Ocean over the last 1,500 years were closely linked to long-term changes in the El Niño/Southern Oscillation (ENSO) and sea surface temperature. The finding, reported in Nature, could help with future hurricane modeling and prediction.

In the Aug. 13 issue of the journal Nature, climate researchers including Jonathan Woodruff of the University of Massachusetts Amherst show that the frequency of intense hurricanes in the Atlantic Ocean over the last 1,500 years has been closely linked to long-term changes in the El Niño/Southern Oscillation (ENSO) and sea surface temperature. The finding could help with hurricane modeling and prediction in the future.

Establishing the link between hurricane variability and climate change over these longer timescales “is a new viewpoint for us,” Woodruff explains. “There’s a randomness to hurricanes. But the fact that we can see trends that rise above that randomness is significant and a bit of a surprise. Our work indicates that hurricane activity has responded noticeably to past climate shifts. When considering future climate change over the next century, our results indicate that measurable changes in hurricane activity could occur, rising above the noise in the system.”

A relationship between ENSO, sea surface temperature and hurricane activity is seen in modern times, Woodruff says, but the historical record based on ships’ logs and other observations is not long enough to assess variability on timescales longer than a few decades at best. “Given the possible effects of continued climate warming on intense tropical cyclone activity, it’s essential that we develop an understanding of how past climate change has affected tropical cyclone frequency, intensity and track on longer timescales,” the geologist says. “This work is another step forward in understanding the complex relationship between climate variability and Atlantic hurricane activity.”

Woodruff and colleagues’ study shows that a statistical climate model and actual paleoclimate data cross-validate each other over the last 1,500 years during key intervals of climatic change.

Specifically, UMass Amherst’s Woodruff and colleagues at Penn State and Woods Hole Oceanographic Institute prepared sedimentary reconstructions of hurricane-induced flooding, preserved in coastal ponds and salt marshes and collected as core samples from eight representative sites throughout the western North Atlantic, an approach known as paleotempestology.

These environments are usually protected from the sea by barrier beach systems. They enjoy sustained quiet periods during which only fine-grained mud and organic materials build up on pond floors and marsh surfaces. But during hurricanes and other storms, these normally calm environments are overrun with ocean waves and storm surges that carry in coarser sand from the barrier beaches. The sedimentary record is thus one of fine-grained organic mud, interbedded with coarse-grained, storm-induced deposits. Such deposits serve as natural archives of past hurricanes, with storm reconstructions that can extend back for many thousands of years, Woodruff points out.

Although still limited to a few reconstructions at present, he and colleagues have now observed statistically significant trends in tropical cyclone activity emerging from paleo-hurricane records. They compared these trends to data from a statistical model which independently predicted hurricane variability using paleo-reconstructions of climate factors known to influence hurricane activity, such as sea surface temperature, ENSO and the North Atlantic Oscillation.

The model predicted similar trends to those observed in the paleo-storm reconstructions, with an observed decrease in hurricane activity during the “Little Ice Age” around 300 years ago, a time when sea surface temperatures were lower than today and El Niño events appear to have occurred more frequently. Likewise, a period of increased hurricane activity similar to present levels also occurred around 1,000 years ago during an interval known as the “Medieval Climate Anomaly,” driven predominantly by increases in both sea surface temperature and the frequency of La Niña events.

Woodruff says the new finding “is like so much in science―in hindsight it makes sense. When the evidence is supplied, it’s simple enough to see the relationships, as in this case with the two independent records telling the same story. But until we had this evidence, things were much less clear.”

Jon Woodruff | Newswise Science News
Further information:
http://www.nsm.umass.edu

More articles from Earth Sciences:

nachricht Six-decade-old space mystery solved with shoebox-sized satellite called a CubeSat
15.12.2017 | National Science Foundation

nachricht NSF-funded researchers find that ice sheet is dynamic and has repeatedly grown and shrunk
15.12.2017 | National Science Foundation

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>