Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Past Atlantic Hurricanes Linked to Climate Change

14.08.2009
Climate researchers show intense hurricanes in the Atlantic Ocean over the last 1,500 years were closely linked to long-term changes in the El Niño/Southern Oscillation (ENSO) and sea surface temperature. The finding, reported in Nature, could help with future hurricane modeling and prediction.

In the Aug. 13 issue of the journal Nature, climate researchers including Jonathan Woodruff of the University of Massachusetts Amherst show that the frequency of intense hurricanes in the Atlantic Ocean over the last 1,500 years has been closely linked to long-term changes in the El Niño/Southern Oscillation (ENSO) and sea surface temperature. The finding could help with hurricane modeling and prediction in the future.

Establishing the link between hurricane variability and climate change over these longer timescales “is a new viewpoint for us,” Woodruff explains. “There’s a randomness to hurricanes. But the fact that we can see trends that rise above that randomness is significant and a bit of a surprise. Our work indicates that hurricane activity has responded noticeably to past climate shifts. When considering future climate change over the next century, our results indicate that measurable changes in hurricane activity could occur, rising above the noise in the system.”

A relationship between ENSO, sea surface temperature and hurricane activity is seen in modern times, Woodruff says, but the historical record based on ships’ logs and other observations is not long enough to assess variability on timescales longer than a few decades at best. “Given the possible effects of continued climate warming on intense tropical cyclone activity, it’s essential that we develop an understanding of how past climate change has affected tropical cyclone frequency, intensity and track on longer timescales,” the geologist says. “This work is another step forward in understanding the complex relationship between climate variability and Atlantic hurricane activity.”

Woodruff and colleagues’ study shows that a statistical climate model and actual paleoclimate data cross-validate each other over the last 1,500 years during key intervals of climatic change.

Specifically, UMass Amherst’s Woodruff and colleagues at Penn State and Woods Hole Oceanographic Institute prepared sedimentary reconstructions of hurricane-induced flooding, preserved in coastal ponds and salt marshes and collected as core samples from eight representative sites throughout the western North Atlantic, an approach known as paleotempestology.

These environments are usually protected from the sea by barrier beach systems. They enjoy sustained quiet periods during which only fine-grained mud and organic materials build up on pond floors and marsh surfaces. But during hurricanes and other storms, these normally calm environments are overrun with ocean waves and storm surges that carry in coarser sand from the barrier beaches. The sedimentary record is thus one of fine-grained organic mud, interbedded with coarse-grained, storm-induced deposits. Such deposits serve as natural archives of past hurricanes, with storm reconstructions that can extend back for many thousands of years, Woodruff points out.

Although still limited to a few reconstructions at present, he and colleagues have now observed statistically significant trends in tropical cyclone activity emerging from paleo-hurricane records. They compared these trends to data from a statistical model which independently predicted hurricane variability using paleo-reconstructions of climate factors known to influence hurricane activity, such as sea surface temperature, ENSO and the North Atlantic Oscillation.

The model predicted similar trends to those observed in the paleo-storm reconstructions, with an observed decrease in hurricane activity during the “Little Ice Age” around 300 years ago, a time when sea surface temperatures were lower than today and El Niño events appear to have occurred more frequently. Likewise, a period of increased hurricane activity similar to present levels also occurred around 1,000 years ago during an interval known as the “Medieval Climate Anomaly,” driven predominantly by increases in both sea surface temperature and the frequency of La Niña events.

Woodruff says the new finding “is like so much in science―in hindsight it makes sense. When the evidence is supplied, it’s simple enough to see the relationships, as in this case with the two independent records telling the same story. But until we had this evidence, things were much less clear.”

Jon Woodruff | Newswise Science News
Further information:
http://www.nsm.umass.edu

More articles from Earth Sciences:

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>