Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Parasite Eggs From the Celtic Period Found in Basel

29.12.2014

Archaeologists from the University of Basel discovered eggs of intestinal parasites in samples from the former Celtic settlement “Basel-Gasfabrik”, and concluded that its population lived in poor sanitary conditions. Using special geoarchaelogical methods, they found three different types of parasites, as reported in the Journal of Archaeological Science.

As part of an international project, researchers at the Integrative Prehistory and Archaeological Science center (IPAS) at the University of Basel examined samples from the “Basel-Gasfabrik” Celtic settlement, at the present day site of Novartis. The settlement was inhabited around 100 B.C. and is one of the most significant Celtic sites in Central Europe. The team found the durable eggs of roundworms (Ascaris sp.), whipworms, (Trichuris sp.) and liver flukes (Fasciola sp.). The eggs of these intestinal parasites were discovered in the backfill of 2000 year-old storage and cellar pits from the Iron Age.


Roundworm egg (Ascaris sp.) with typical undulating membrane.

Fig: IPAS


Excrement of human or swine infested with roundworm (Ascaris sp.) and whipworm (Trichuris sp.)

Fig: IPAS

The presence of the parasite eggs was not, as is usually the case, established by wet sieving of the soil samples. Instead, a novel geoarchaeology-based method was applied using micromorphological thin sections, which enable the parasite eggs to be captured directly in their original settings. The thin sections were prepared from soil samples embedded in synthetic resin, thus permitting the researchers to determine the number and exact location of the eggs at their site of origin in the sediments of the pits. This offered new insights into diseases triggered by parasites in the Iron Age settlement.

Poor sanitary conditions

The eggs of the Iron Age parasites originate from preserved human and animal excrement (coprolites) and show that some individuals were host to several parasites at the same time. Furthermore, the parasite eggs were distributed throughout the former topsoil, which points to the waste management practiced for this special type of 'refuse'. It may, for example, have been used as fertilizer for the settlement's vegetable gardens. As liver flukes require freshwater snails to serve as intermediate hosts, it is conceivable that this type of parasite was introduced via livestock brought in from the surrounding areas to supply meat for the settlement's population.

The archaeologists also used the microscopic slides to show that the eggs of the intestinal parasites were washed out with water and dispersed in the soil. This suggests poor sanitary conditions in the former Celtic community, in which humans and animals lived side by side. At the same time, the distribution of the parasite eggs indicates possible routes of transmission within and between species.

The results of the study were published in the Journal of Archaeological Science. The research project conducted by the IPAS (University of Basel), and Archäologische Bodenforschung Basel-Stadt was also supported by the Swiss National Science Foundation and the Freiwillige Akademische Gesellschaft Basel.

Original source
Sandra L. Pichler, Christine Pümpin, David Brönnimann, Philippe Rentzel
Life in the Proto-Urban Style: The identification of parasite eggs in micromorphological thin sections from the Swiss Basel-Gasfabrik late Iron Age settlement.
Journal of Archaeological Science (2014) | doi:10.1016/j.jas.2013.12.002

Further information
PD Dr. Philippe Rentzel, University of Basel, Integrative Prehistory and Archaeological Science (IPAS), phone: +41 61 201 02 08, email: philippe.rentzel@unibas.ch

Christoph Dieffenbacher | Universität Basel
Further information:
http://www.unibas.ch

Further reports about: Archaeological Science IPAS Iron Iron Age eggs parasite research project waste management

More articles from Earth Sciences:

nachricht Sediment from Himalayas may have made 2004 Indian Ocean earthquake more severe
26.05.2017 | Oregon State University

nachricht Devils Hole: Ancient Traces of Climate History
24.05.2017 | Universität Innsbruck

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>