Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Parasite Eggs From the Celtic Period Found in Basel

29.12.2014

Archaeologists from the University of Basel discovered eggs of intestinal parasites in samples from the former Celtic settlement “Basel-Gasfabrik”, and concluded that its population lived in poor sanitary conditions. Using special geoarchaelogical methods, they found three different types of parasites, as reported in the Journal of Archaeological Science.

As part of an international project, researchers at the Integrative Prehistory and Archaeological Science center (IPAS) at the University of Basel examined samples from the “Basel-Gasfabrik” Celtic settlement, at the present day site of Novartis. The settlement was inhabited around 100 B.C. and is one of the most significant Celtic sites in Central Europe. The team found the durable eggs of roundworms (Ascaris sp.), whipworms, (Trichuris sp.) and liver flukes (Fasciola sp.). The eggs of these intestinal parasites were discovered in the backfill of 2000 year-old storage and cellar pits from the Iron Age.


Roundworm egg (Ascaris sp.) with typical undulating membrane.

Fig: IPAS


Excrement of human or swine infested with roundworm (Ascaris sp.) and whipworm (Trichuris sp.)

Fig: IPAS

The presence of the parasite eggs was not, as is usually the case, established by wet sieving of the soil samples. Instead, a novel geoarchaeology-based method was applied using micromorphological thin sections, which enable the parasite eggs to be captured directly in their original settings. The thin sections were prepared from soil samples embedded in synthetic resin, thus permitting the researchers to determine the number and exact location of the eggs at their site of origin in the sediments of the pits. This offered new insights into diseases triggered by parasites in the Iron Age settlement.

Poor sanitary conditions

The eggs of the Iron Age parasites originate from preserved human and animal excrement (coprolites) and show that some individuals were host to several parasites at the same time. Furthermore, the parasite eggs were distributed throughout the former topsoil, which points to the waste management practiced for this special type of 'refuse'. It may, for example, have been used as fertilizer for the settlement's vegetable gardens. As liver flukes require freshwater snails to serve as intermediate hosts, it is conceivable that this type of parasite was introduced via livestock brought in from the surrounding areas to supply meat for the settlement's population.

The archaeologists also used the microscopic slides to show that the eggs of the intestinal parasites were washed out with water and dispersed in the soil. This suggests poor sanitary conditions in the former Celtic community, in which humans and animals lived side by side. At the same time, the distribution of the parasite eggs indicates possible routes of transmission within and between species.

The results of the study were published in the Journal of Archaeological Science. The research project conducted by the IPAS (University of Basel), and Archäologische Bodenforschung Basel-Stadt was also supported by the Swiss National Science Foundation and the Freiwillige Akademische Gesellschaft Basel.

Original source
Sandra L. Pichler, Christine Pümpin, David Brönnimann, Philippe Rentzel
Life in the Proto-Urban Style: The identification of parasite eggs in micromorphological thin sections from the Swiss Basel-Gasfabrik late Iron Age settlement.
Journal of Archaeological Science (2014) | doi:10.1016/j.jas.2013.12.002

Further information
PD Dr. Philippe Rentzel, University of Basel, Integrative Prehistory and Archaeological Science (IPAS), phone: +41 61 201 02 08, email: philippe.rentzel@unibas.ch

Christoph Dieffenbacher | Universität Basel
Further information:
http://www.unibas.ch

Further reports about: Archaeological Science IPAS Iron Iron Age eggs parasite research project waste management

More articles from Earth Sciences:

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>