Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ozone-protection treaty had climate benefits, too, study says

06.08.2013
The global treaty that headed off destruction of earth's protective ozone layer has also prevented major disruption of global rainfall patterns, even though that was not a motivation for the treaty, according to a new study in the Journal of Climate.

The 1987 Montreal Protocol phased out the use of chloroflourocarbons, or CFCs, a class of chemicals that destroy ozone in the stratosphere, allowing more ultraviolet radiation to reach earth's surface. Though the treaty aimed to reverse ozone losses, the new research shows that it also protected the hydroclimate.


The largest ozone hole over Antarctica (in purple) was recorded in September 2006. Thanks to the Montreal Protocol, the amount of ozone-depleting chemicals in the atmosphere peaked in the late 1990s and Antarctica's ozone hole is expected to recover by 2060.

Credit: NASA

The study says the treaty prevented ozone loss from disrupting atmospheric circulation, and kept CFCs, which are greenhouse gases, from warming the atmosphere and also disrupting atmospheric circulation. Had these effects taken hold, they would have combined to shift rainfall patterns in ways beyond those that may already be happening due to rising carbon dioxide in the air.

At the time the Montreal Protocol was drafted, the warming potential of CFCs was poorly understood, and the impact of ozone depletion on surface climate and the hydrological cycle was not recognized at all. "We dodged a bullet we did not know had been fired," said study coauthor Richard Seager, a climate scientist at Columbia University's Lamont-Doherty Earth Observatory.

Today, rising carbon dioxide levels are already disturbing earth's hydrological cycle, making dry areas drier and wet areas wetter. But in computer models simulating a world of continued CFC use, the researchers found that the hydrological changes in the decade ahead, 2020-2029, would have been twice as severe as they are now expected to be. Subtropical deserts, for example in North America and the Mediterranean region, would have grown even drier and wider, the study says, and wet regions in the tropics, and mid-to-high latitudes would have grown even wetter.

The ozone layer protects life on earth by absorbing harmful ultraviolet radiation. As the layer thins, the upper atmosphere grows colder, causing winds in the stratosphere and in the troposphere below to shift, displacing jet streams and storm tracks. The researchers' model shows that if ozone destruction had continued unabated, and increasing CFCs further heated the planet, the jet stream in the mid-latitudes would have shifted toward the poles, expanding the subtropical dry zones and shifting the mid-latitude rain belts poleward. The warming due to added CFCs in the air would have also intensified cycles of evaporation and precipitation, causing the wet climates of the deep tropics and mid to high latitudes to get wetter, and the subtropical dry climates to get drier.

The study builds on earlier work by coauthor Lorenzo Polvani, a climate scientist with joint appointments at Lamont-Doherty and Columbia's Fu Foundation School of Engineering and Applied Science. Polvani and others have found that two human influences on climate --ozone loss and industrial greenhouse gases—have together pushed the jet stream in the southern hemisphere south over recent decades. As the ozone hole over Antarctica closes in the coming decades, the jet stream will stop its poleward migration, Polvani found in a 2011 study in the journal Geophysical Research Letters. The projected stopping of the poleward jet migration is a result of the ozone hole closing, canceling the effect of increasing greenhouse gases.

"We wanted to take a look at the more drastic scenario—what would have happened if there had been no Montreal Protocol?" said study lead author Yutian Wu, a former Lamont graduate student who is now a postdoctoral researcher at New York University. "The climatic impacts of CFCs and ozone depletion were not known back then."

The Montreal Protocol is considered one of the most successful environmental treaties of all time. Once scientists linked CFCs to rapid ozone loss over Antarctica, world leaders responded quickly. Nearly 200 countries have ratified the treaty. The ozone depletion that CFCs would have caused is now known to have been far worse than was realized at the time, in 1987. The cost of developing CFC-substitutes also turned out to be far less than the industry estimated.

"It's remarkable that the Montreal Protocol has not only been important in protecting the ozone layer and in decreasing global warming but that it also has had an important effect on rainfall patterns and reducing the changes we are in for," said Susan Solomon, an atmospheric scientist at the Massachusetts Institute of Technology who won the Vetlesen Prize earlier this year for her work on ozone depletion. Solomon was not involved in the study.

As a greenhouse gas, CFCs can be thousands of times more potent than carbon dioxide. Dutch scientist Guus Velders estimated in a 2007 study that had the chemicals not been phased out, by 2010 they would have generated the warming equivalent of 10 billion tons of carbon dioxide, (Humans produced 32 billion tons of CO2 in 2011).

Hydroflourocarbons, or HFCs, have largely replaced CFCs as refrigerants, aerosol propellants and other products. While HFCs are ozone-safe, they, too, are powerful greenhouse gases that have become a concern as world leaders grapple with climate change. The Kyoto Protocol was drafted to regulate global greenhouse gas emissions, but its expiration at the end of 2012 has led some countries to seek climate protections from the Montreal Protocol. Canada, Mexico and the United States have asked that HFCs be regulated under Montreal, though the treaty was never intended to limit greenhouse gases. So far no action has been taken.

"This research supports the principle that it's generally best not to put things into the environment that weren't there before," said Scott Barrett, an economist at the Earth Institute who was not involved in the study. "It's a lesson, surely, for our current efforts to limit greenhouse gas emissions."

The study, "The Importance of the Montreal Protocol in Protecting Earth's Hydroclimate," is available from the authors.

Scientist contacts:
Yutian Wu, yutian@cims.nyu.edu
Richard Seager, seager@ldeo.columbia.edu, 845-365-8743
Lorenzo Polvani, lmp@columbia.edu
More information: Kim Martineau, Science Writer, Lamont-Doherty
kmartine@ldeo.columbia.edu 646-717-0134

Kim Martineau | EurekAlert!
Further information:
http://www.columbia.edu

More articles from Earth Sciences:

nachricht Modeling magma to find copper
13.01.2017 | Université de Genève

nachricht What makes erionite carcinogenic?
13.01.2017 | Friedrich-Schiller-Universität Jena

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Solar Collectors from Ultra-High Performance Concrete Combine Energy Efficiency and Aesthetics

16.01.2017 | Trade Fair News

3D scans for the automotive industry

16.01.2017 | Automotive Engineering

Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs

16.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>