Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Oxygen arrived at the bottom of the Central Baltic Sea

05.03.2015

Two and a half months after oxygen rich North Sea water entered the Baltic Sea, IOW scientists measure its effect in the Gotland Basin.

The Eastern Gotland Basin in the centre of the Baltic Sea is the largest and second deepest of the Baltic Sea basins. Here, the water masses and any marine life below 90 m water depth nearly constantly suffer from oxygen depletion and toxic hydrogen sulfide.


Comparative maps from areas with oxygen depletion and hydrogen sulfide occurrence in the near-bottom water layer of the Baltic Sea at the time of A- November 2014 (stagnation) an B-February 2015 (salt water inflow). At selected stations, oxygen and hydrogen sulfide concentrations are depicted in bar chart. The 70 m isobath serves for orientation and illustration of the deeper basins in the central Baltic.

Source: IOW

For this reason, these regions are often referred to as “dead zone”. Physical Oceanographers from the Leibniz Institute for Baltic Sea Research in Rostock Warnemünde now measured oxygen in the bottom water. This proves their earlier presumptions that the amount of inflowing water masses was large enough and its salt content and density sufficient to let them pass the submarine sills and reach the Baltic Proper.

The inflow of December 2014 was the largest event since 1951 and the third largest since the beginning of oceanographic measurements in the Baltic.

The scientific crew with Dr. Lars Umlauf as chief scientist on board of r/v ALKOR is on its way through the central Baltic Sea from the 26th of February to 11th of March 2015.

Contact:

Dr. Michael Naumann, Department Physical Oceanography and Instrumentation, IOW (phone: +49 381 5197 267, Email: michael.naumann@io-warnemuende.de)

Dr. Barbara Hentzsch, Public Relation, IOW, phone: +49 381 5197 102, Email: barbara.hentzsch@io-warnemuende.de)

Background information: salt water inflows
The water body of the Baltic Sea is permanently stratified with brackish surface water fed by the constant freshwater discharge of numerous rivers. This surface layer is in constant exchange with the atmosphere. It is well provided with oxygen by wind mixing, temperature-induced convection processes and the biological production. From a depth of approximately 70 m on, in areas which are no longer influenced by wind mixing, the Baltic Sea shows its close connection to the North Sea: it is here that the salty North Sea water concentrates which periodically flows into the Baltic Sea via the Danish Belt Sea, Being saltier than the Baltic Sea water, it is also heavier, thus it is flowing along the bottom of the Baltic Sea into the deep basins.

Both water bodies do not mix but to a minor degree which causes a permanent stratification. Solid particles like dead organic matter can easily pass this boundary whereas gases dissolved in the water are hold back efficiently. The oxygen content of the deep water therefore constantly decreases as the oxygen is consumed during the decomposition of the deposited organic particles. When the oxygen is entirely depleted, toxic hydrogen sulfide forms. An improvement of this state can only be reached by the lateral supply with large amounts of North Sea water which has been in contact with the atmosphere and therefore is rich in oxygen.

Submarine sills in the Western Baltic Sea hamper this horizontal water exchange. Only under specific meteorological conditions, the salt water can pass these natural impediments to supply the eastern/central parts of the Baltic Sea with oxygen. These sills are the so called Darß Sill, an extended sandy plain between the Danish Island of Moen and the peninsula of Fischland-Darß-Zingst with water depths of 18 – 19 m, and the Drogden Sill being positioned in the Oere Sound between the Danish island Zealand and the Swedish mainland with water depths of only 8–9 m.

Since 2003, no major salt water inflow has occured, which has led to the fact that in the deep areas of the central Baltic Sea (>90 m) all oxygen has been consumed and an increased formation of hydrogen sulfide went on. Thus, the biological living conditions for higher organisms have strongly been limited in these areas, which therefore were often referred to as “dead zones” in the media .

The IOW is a member of the Leibniz Association to which 89 research institutes and scientific infrastructure facilities for research currently belong. The focus of the Leibniz Institutes ranges from Natural, Engineering and Environmental Science to Economic, Social, and Space Sciences and to the humanities. The institutes are jointly financed at the state and national levels. The Leibniz Institutes employ a total of 17.200 people, of whom 8.200 are scientists, of which 3.300 are junior scientists. The total budget of the Institutes is more than 1.5 billion Euros. Third-party funds amount to approximately € 330 million per year. www.leibniz-gemeinschaft.de

Weitere Informationen:

http://www.io-warnemuende.de/baltic-inflow-of-december-2014.html - More information on the inflow event of December 2014
http://www.io-warnemuende.de/baltic-inflow-of-december-2014-computer-simulation.... - Computer simulation showing the bottom-near distribution of the inflow water.

Dr. Barbara Hentzsch | idw - Informationsdienst Wissenschaft

Further reports about: Atmosphere Baltic Sea IOW Leibniz-Institut Ostseeforschung Oxygen Warnemünde sulfide toxic

More articles from Earth Sciences:

nachricht By saving cost and energy, the lighting revolution may increase light pollution
23.11.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

nachricht Frictional Heat Powers Hydrothermal Activity on Enceladus
23.11.2017 | Universität Heidelberg

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Underwater acoustic localization of marine mammals and vehicles

23.11.2017 | Information Technology

Enhancing the quantum sensing capabilities of diamond

23.11.2017 | Physics and Astronomy

Meadows beat out shrubs when it comes to storing carbon

23.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>