Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

One of the World’s Most Significant Finds of Marine Reptile Fossils from the Cretaceous Period

04.06.2014

Researchers from Heidelberg und Karlsruhe study ichthyosaur graveyard in Torres del Paine National Park at Chile’s southern tip

The cache of skeletal ichthyosaurs stumbled upon ten years ago in Chile turns out to be one of the world’s most significant fossil finds of marine reptiles from the Cretaceous period, containing many nearly fully preserved ichthyosaur skeletons as well as numerous other fossils.


Articulated skeleton of an ichthyosaur from the Torres del Paine National Park

Photo: W. Stinnesbeck

This is the conclusion of a German-Chilean research team of geoscientist Prof. Dr. Wolfgang Stinnesbeck of Heidelberg University and palaeontologist Prof. Dr. Eberhard Frey of the State Museum of Natural History Karlsruhe. The scientists have fully catalogued the discovery for the first time, while at the same time reconstructing the conditions that led to the excellent preservation and unusual concentration of “fish-lizard” skeletons. Their results were published in the journal “Geological Society of America Bulletin”.

In the southern summer of 2004, in Torres del Paine National Park in Patagonia near Chile’s southern tip, glaciologists stumbled upon the skeletal remains of ichthyosaurs, or fish-lizards, probably exposed just a few years earlier as the Patagonian glacier receded. Prof. Stinnesbeck and Prof. Frey as well as scientists in Chile have spent the last few years studying this new and scientifically rich site. In three expeditions the German-Chilean team of experts uncovered more than 40 virtually complete skeletons of adult and juvenile ichthyosaurs, and even embryos, as well as ammonites, belemnites, bivalves, bony fishes and plant remains. “This concentration is unique for Chile and South America, making the fossil site significant internationally,” explains the researcher from Heidelberg University's Institute of Earth Sciences.

According to the German-Chilean research team, the fish-lizard lived and hunted along the northeastern edge of a deep sea that then separated the Antarctic continent from Patagonia. Adults and juveniles hunted in groups in an underwater canyon rich with squid and small fish, their most important prey. As the continent gradually broke apart, earthquakes or avalanches on the steep slope occasionally unleashed devastating mudflows that sucked everything in their path down with them, including the marine reptiles.

“The air-breathing fish-lizards became disoriented in the turbidity currents. They were sucked down hundreds of metres into the deep ocean,” says Prof. Stinnesbeck. “The fine sediment that was swept along immediately entombed the dead or dying animals.”

The German Research Foundation funded the studies at the site. In addition to Prof. Stinnesbeck and Prof. Frey, Dr. Marcelo Leppe Cartes of the Instituto Antárctico Chileno (INACH), the Chilean Antarctic Institute in Punta Arenas, as well as the Corporación Nacional Forestal (CONAF), the Chilean National Forest Corporation, took part in the project.

Original publication:
Wolfgang Stinnesbeck, Eberhard Frey, Luis Rivas, Judith Pardo Pérez, Marcelo Leppe Cartes, Christian Salazar Soto and Patricio Zambrano Lobos: A Lower Cretaceous ichthyosaur graveyard in deep marine slope channel deposits at Torres del Paine National Park, southern Chile. Geological Society of America Bulletin (published online 22 May 2014), doi: 10.1130/B30964.1

Internet information:
http://www.uni-heidelberg.de/fakultaeten/chemgeo/geow/forschungsgruppen/palaeontologie/konzentrat.html

Contact:

Prof. Dr. Wolfgang Stinnesbeck
Institute of Earth Sciences
Phone: +49 6221 54-6057
wolfgang.stinnesbeck@geow.uni-heidelberg.de

Prof. Dr. Eberhard Frey
State Museum of Natural History Karlsruhe
Phone: +49 721 175-2117
dino.frey@smnk.de

Heidelberg University
Communications and Marketing
Press Office, phone: +49 6221 54-2311
presse@rektorat.uni-heidelberg.de

Marietta Fuhrmann-Koch | idw - Informationsdienst Wissenschaft

Further reports about: Chile Cretaceous Patagonia Reptile concentration ichthyosaur reptiles skeletal skeletons

More articles from Earth Sciences:

nachricht Researchers find higher than expected carbon emissions from inland waterways
25.05.2016 | Washington State University

nachricht Rutgers scientists help create world's largest coral gene database
24.05.2016 | Rutgers University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Worldwide Success of Tyrolean Wastewater Treatment Technology

A biological and energy-efficient process, developed and patented by the University of Innsbruck, converts nitrogen compounds in wastewater treatment facilities into harmless atmospheric nitrogen gas. This innovative technology is now being refined and marketed jointly with the United States’ DC Water and Sewer Authority (DC Water). The largest DEMON®-system in a wastewater treatment plant is currently being built in Washington, DC.

The DEMON®-system was developed and patented by the University of Innsbruck 11 years ago. Today this successful technology has been implemented in about 70...

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

11 million Euros for research into magnetic field sensors for medical diagnostics

27.05.2016 | Awards Funding

Fungi – a promising source of chemical diversity

27.05.2016 | Life Sciences

New Model of T Cell Activation

27.05.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>